
ISCLS 2024

Proceedings of the 7th International Sanskrit

Computational Linguistics Symposium

15–17 February, 2024

Auroville,

Puducherry, India

Sponsors

© 2024 The Association for Computational Linguistics

Order copies of this and other ACL proceedings from:

Association for Computational Linguistics (ACL)

209 N. Eighth Street

Stroudsburg, PA 18360

USA

Tel: +1-570-476-8006

Fax: +1-570-476-0860

acl@aclweb.org

ISBN: 979-8-89176-027-1

ii

Preface

Welcome to the 7th International Sanskrit Computational Linguistics
Symposium (ISCLS 2024) at Auroville, Puducherry, India. The aim of ISCLS is to
bring together researchers interested in any aspects of Sanskrit Computational
Linguistics. Full papers were invited on original and unpublished research on
various aspects of Computational Linguistics and Digital Humanities related to
Sanskrit (Classical and Vedic), Prakrit, Pali, Buddhist Hybrid Sanskrit, etc.

After a rigorous review process that constituted at least 3 reviews, a total of 10
full papers were accepted for presentation at the symposium. These include a
variety of themes ranging from using web-based platforms for Sanskrit
processing and teaching to distances between languages to identifying word
senses, discourse relations, figures of speech, etc. In addition to full papers, the
symposium features 18 demonstrations of various Sanskrit and Pali-based tools.
An interesting panel discussion on “AI and Sanskrit” and 3 invited talks on
aspects of Sanskrit language are part of the symposium as well.

I extend heartfelt appreciation to the Program Committee members for their
active involvement in meticulously reviewing and refining the program details,
contributing significantly to the success of the symposium. Their diligence and
expertise ensured the high quality of the proceedings. I am also grateful to the
esteemed Steering Committee for their invaluable guidance and strategic
oversight throughout the planning and execution of this event. Their collective
wisdom and leadership played a pivotal role in shaping the conference's
direction and ensuring its alignment with our overarching objectives.

I also thank the Organizing Chair for planning and seamless execution of the
symposium. Additionally, I would like to sincerely thank the Web Chair for his
expertise and efforts in managing the webpage of the conference, and for
creating the proceedings.

Arnab Bhattacharya
Program Committee Chair
7th ISCLS

iii

Organization

Program Committee Chair

Arnab Bhattacharya
IIT Kanpur, India

Organising Chair

Martin Gluckman
Sanskrit Research Institute, India

Web Chair

Hrishikesh Terdalkar
IIT Kanpur, India

Steering Committee

Amba Kulkarni
University of Hyderabad, India

Arnab Bhattacharya
IIT Kanpur, India

Brendan Gillon
McGill University, Montreal, Canada

Gérard Huet
INRIA, Paris, France

Malhar Kulkarni
IIT Bombay, India

Pawan Goyal
IIT Kharagpur, India

Peter Scharf
The Sanskrit Library, USA

Technical Program Committee

Amba Kulkarni
University of Hyderabad, India

Amrith Krishna
Learno.AI, India

Arjuna S R
MAHE Bengaluru, India

Arnab Bhattacharya
IIT Kanpur, India

Brendan Gillon
McGill University, Montreal, Canada

Chaitali Dangarikar
IIT Kanpur, India

Ganesh Ramakrishnan
IIT Bombay, India

Gérard Huet
INRIA, Paris, France

Malhar Kulkarni
IIT Bombay, India

Oliver Hellwig
University of Zurich, Switzerland

Patrick McAllister
Austrian Academy of Sciences, Austria

Pavankumar Satuluri
IIT Roorkee, India

Pawan Goyal
IIT Kharagpur, India

Peter Scharf
The Sanskrit Library, USA

Sebastian Nehrdich
University of Hamburg, Germany

Shivani V
Karnataka Sanskrit University, India

Tanuja P Ajotikar
The Sanskrit Library, USA

iv

Contents

Word Sense Alignment of Sanskrit Lexica .
Dhaval Patel, Amba Kulkarni

1

Context and WSD: Analysing Google Translate's Sanskrit to English Output of
Bhagavadgītā Verses for Word Meaning .
Anagha Pradeep, Radhika Mamidi, Pavankumar Satuluri

14

Linguistically Mapping Aśoka: A Dialectometric Approach to the Major Rock
and Major Pillar Edicts .
Patrick Zeitlhuber

27

Hoisting the colors of Sanskrit .
Gérard Huet

39

Using TEI for digital Sanskrit editions containing commentaries:
A study of Kālidāsa's Raghuvaṁśa with Mallinātha's Sañjīvanī
Tanuja P Ajotikar, Ketaki Kaduskar, Peter M Scharf

52

Inter Sentential Discourse Relations .
Saee Vaze, Amba Kulkarni

67

A fast prakriyā generator .
Arun K Prasad

84

Anuprāsa Identifier and Classifier: A computational tool to analyze Sanskrit
figure of sound .
Amruta Vilas Barbadikar, Amba Kulkarni

102

START: Sanskrit Teaching, Annotation, and Research Tool – Bridging
Tradition and Technology in Scholarly Exploration .
Anil Kumar, Amba Kulkarni, Nakka Shailaj

113

The Śabdabrahman exercise platform .
Peter M Scharf, Harsha Pamidipalli

125

v

vi

Word Sense Alignment of Sanskrit Lexica

Dhaval Patel
Department of Sanskrit Studies,

University of Hyderabad
drdhaval2785@gmail.com

Amba Kulkarni
Department of Sanskrit Studies,

University of Hyderabad
ambakulkarni@uohyd.ac.in

Abstract

Word sense alignment is a field of study in which lexical resources or texts are aligned
at the level of word sense rather than the word. The present paper tries to evaluate the
possibility of mechanically aligning Sanskrit lexica at the level of word sense computa-
tionally.

1 Introduction
Sanskrit, an ancient Indian language, has been a medium of transmission of knowledge in various
fields of study for centuries. Compilation of word lists in Sanskrit commenced at an early date
as it was found necessary to access the old literature such as Vedic literature, while the language
was undergoing some transformations with meaning shifts. The lexical resources known as kośas
were developed. They are of two types – (1) Samānārthaka kośas and (2) Anekārthaka kośas.
Samānārthaka kośas enlist the synonyms together. The synonyms are arranged following some
theme, semantic criterion, or ontological classification scheme. For example, in the most famous
samānārthaka kośa viz. Amarakośa, the words are arranged in three kāṇḍas and further within
the kāṇḍas, the headwords are arranged based on either semantic or ontological properties.
Anekārthaka kośas enlist different meanings of a given word. The words may or may not have
any alphabetic arrangement. Both kinds of kośas were meant to be memorized, applied to
texts, and cited as and when the usage of the said word in the literature was to be justified
in a commentary. Therefore, the kośas were almost invariably in a verse form. Vogel (2015)
has given a comprehensive coverage of these Sanskrit kośas and commentarial literature thereon.

Because of the influence of Western lexicography, a few Sanskrit-Sanskrit dictionaries
like Vācaspatyam and Śabdakalpadruma were also compiled on the lines with the Western
methodology of arranging headwords alphabetically and in prose form. Several bilingual
Sanskrit dictionaries such as Sanskrit-English, Sanskrit-French, and Sanskrit-German were
created starting from the early 19th century. Almost all of the major dictionaries that are
free from copyright are available on the Cologne Digital Sanskrit Dictionaries website (CDSD,
2023). This digitized data has various levels of markup. In the recent years Huet (2019) has
developed a digital Sanskrit-French dictionary where the lexical items are directly linked to the
inflectional and derivational morphology.

Some of these dictionaries, in addition to providing the meaning of Sanskrit words in
the target language, also provide citations from Sanskrit texts. The citations in different
dictionaries vary. These citations play an important role in understanding the context in which
the sense is being used. Aligning the senses of different dictionaries would provide us with
more than one example sentence for each sense to understand the context and the semantic
criterion that decides the sense of the word in a given usage. Further, with the availability
of word embeddings for words in several languages such as Hindi, English, French, German,
etc. if the senses in Sanskrit bilingual dictionaries are aligned, one can take advantage of the

1

existing modelling of the world knowledge and the domain knowledge of other languages to
disambiguate Sanskrit words. Such sense mapping would be useful in the Machine Translation
system, for Information Retrieval, and even for a casual learner of the Sanskrit language. This
motivated us to look at the problem of aligning various Sanskrit bilingual dictionaries according
to the senses.

In what follows, we first explain the word sense alignment problem, and the challenges
therein. This is followed by the discussion on the methodology followed for automatic sense
alignment. In section 4 we discuss the sense alignment of two dictionaries Sanskrit-English and
Sanskrit-Hindi by Apte. The results of the alignment algorithms are extended to other pairs of
dictionaries, which is the topic of section 5. Finally we discuss other possible ways of alignment
before concluding.

2 Word Sense Alignment

Word sense alignment, also known as sense alignment or sense mapping matches two entries
from two lexical resources based on the sense the two entries express. Word sense alignment
emerged out of various efforts toward the word sense disambiguation (WSD) problem. WSD
is an important task for several NLP applications such as Machine Translation, Information
Retrieval, Question Answering, Summarisation, and so on. At the same time, it is one of the
most difficult problems in the field of Natural Language Processing (NLP). It is considered
as being an AI-complete problem (Agirre and Edmonds, 2007). The difficulties arise due to
poor understanding of the process involved. Various factors such as linguistic, contextual,
domain-specific, cultural, and world knowledge contribute to the process of manual word sense
disambiguation. In the case of resource-rich languages such as English, there are several lexical
resources with varied granularity such as WordNet (Miller, 1995), FrameNet (Baker et al.,
1998), ConceptNet (Speer et al., 2017), VerbNet (Schuler, 2005) etc., and sense-tagged corpora
available in digital media. This resulted in several efforts aiming at the alignment of such
resources known as Word Sense Aligned (WSA) resources. The development of Euro-WordNet
(Vossen, 1998) and Indo-WordNet (Bhattacharyya, 2010) are also steps towards generating
Word sense-aligned lexical resources so that the sense-tagged corpus in one language can become
available in another with minimum effort. In the recent years, Word Sense Alignment has
gained importance. Languages with low resources would like to take advantage of the resources
available in resource-rich languages, by aligning their resources to those of the rich languages.
For example Salgado et al. (2020) describes the challenges of word sense alignment of Portuguese
Language Resources. Joshi et al. (2012) present a heuristic approach to link English and Hindi
WordNets by linking their senses. Two closely related Czech lexical resources VALLEX1 and
PDT-VALLEX2 were aligned fully automatically (Bejcek et al., 2014). Johansson and Pina
(2015) used word sense embeddings to automatically link the Swedish language banks.

During his post-doctoral fellowship in 2012 at Inria, Pawan Goyal aligned the Sanskrit Heritage
dictionary with an XML version of Monier-Williams available at CDSD (Goyal et al., 2012).
Goyal used the online google translator to translate the French entries into English and then
aligned them with the entries in Monnier Williams’ Sanskrit-English dictionary, by manually
aligning the entries wherever there were ambiguities/multiple choices available. The alignment
process is incremental and thus may be iterated on successive versions of the Sanskrit Heritage
dictionary.

1http://ufal.mff.cuni.cz/vallex/2.6/
2http://lindat.mff.cuni.cz/services/PDT-Vallex/

2

2.1 Challenges
The conceptual space is a continuum that is divided into discrete units by the lexicon of a
language. Since the lexicon is denumerably finite, a word represents a piece of continuous
conceptual space and not a discrete point. This sometimes leads to one word representing a
spectrum of meanings. Such words are termed polysemous words. Sometimes, more than one
lexical unit produces the same word form. Such word forms are called homonyms. Among the
homonymous and polysemous meanings, typically the homonyms are provided with different
headword entries, while the polysemous meanings are clubbed under a single head. Within pol-
ysemous meanings, the granularity is decided by the lexicographer. Deciding the granularity of
the meaning is not trivial. It is not at all clear when a sense of the word should be treated as a
separate meaning and when it should be subsumed within an already existing meaning. Further
deciding between a polysemy and homonymy is subjective due to the fuzzy boundary between
them. Another factor is the inclusion of metaphoric meanings in the dictionary. Indian tradition
discusses three types of meanings viz. abhidhā (literal), lakṣaṇā (metaphoric or secondary) and
vyañjanā (suggestive). While it is impossible to provide the suggestive meanings, which are sub-
jective in nature, and also depend on the context, the lexicographers do consider the secondary
or suggestive meanings for inclusion in the dictionaries. Even in the case of dictionaries from
the same lexicographer, the intended audience, printing or economic considerations may force
the lexicographer to deal with sense granularity in different ways across different dictionaries.
Therefore, the choice of sense granularity is mostly left to the discretion of the lexicographer, as
has been observed through various lexical resources. Because of these reasons, the word sense
mapping between different lexical resources is not trivial.

3 Methodology
Manually aligning lexical resources at the word sense level is a very laborious task. It would
also require the person to be well versed in two languages e.g. aligning a Sanskrit-English and
Sanskrit-Hindi dictionary would require the person to know at least English and Hindi, and
preferably Sanskrit too. For a resource-starved languages like Sanskrit, this may be very costly
and time-consuming.

The present work focuses on finding out the similarity between different meanings of a given
word and present the human annotator with a similarity score or a confidence score, so that
the annotator may devote more time to the places where the machine performs with a low
confidence level. We also aim at finding a more or less language-agnostic way of automatically
or semi-automatically aligning lexical resources at the word sense level so that it can be
extended to other language pairs.

For any mechanical mapping between entries from two dictionaries to be successful, either
both the target languages need to be the same or a model trained on both languages to identify
similar concepts across both languages is needed. The first approach is simpler. Because of
the advancement in machine translation technologies and publicly available resources such
as Google Translate3, it has become possible to translate various texts from one language to
another. Thus, in the absence of models trained in two different languages, one can still use
Google Translate to identify similar concepts across languages. The task of finding out the
similarity between two documents (in our case, the meaning of the word for a given sense) is a
common theme in information retrieval (IR), topic modeling, ontology matching, etc. There
are various algorithms which have already been tested for the same.

Bär et al. (2013) have enumerated and implemented the following similarity algorithms in
their software: Longest Common Substring, Greedy String Tiling (Wise, 1996), Jaro (1989),

3https://translate.google.com/ accessed on 20 September 2023

3

Jaro-Winkler (Winkler, 1990), Monge and Charles (1997), Levenshtein (1966), Jiang and
Conrath (1997), Resnik (1995), Latent Semantic Analysis (Landauer et al., 1998) and Explicit
Semantic Analysis (Gabrilovich and Markovitch, 2007). As the dictionary meanings are
relatively small chunks of text, with sizes ranging upto two or three sentences at maximum,
structural and stylistic similarity measures mentioned in the said paper are not of much
relevance to the task at hand. Semantic similarity measures presume some graph-like structure
and use the structure of those graphs to find out the similarity or nearness between two
nodes. These work best when there is some ontological representation of the world knowledge
or some hierarchy of the word/word senses and their relationship is explicitly coded. In an
alphabetically arranged dictionary, such a relationship is almost non-existent. Therefore, these
measures were not tried. Latent Semantic Analysis (LSA) and explicit semantic analysis (ESA)
require a lot of computational resources. Training and running these algorithms on a large
corpus like two full-fledged dictionaries will be computationally too heavy. LSA may be able to
identify similarities between ‘child’ and ‘offspring’, which a normal text-based scorer may miss.
However, due to limited computational resources, we have not tried them either. Other than
these measures, there are following string-based measures implemented by rapidfuzz library4 -
Damerau (1964), Hamming (1950), Indel, OSA, Prefix and Postfix.

The present paper focuses on the usability of string-based similarity measures for finding out
the mapping of word senses. We present here our efforts towards the word sense alignment
of Sanskrit lexical resources. We present three case studies. The first one is with two
different target languages but the same compiler. Here we have chosen Sanskrit-English5 and
Sanskrit-Hindi dictionaries of Apte6. Since the second dictionary is based on the first one, the
assumption is there would be a good chance of getting one-one mapping. The second pair is
with the same target language but different compilers. Here we have chosen Sanskrit-English
by two different compilers – Wilson (1832)7 and Yates (1846)8. The third one was a pair of
monolingual English lexical resources viz. Webster’s Unabridged Dictionary of the English
Language (Webster, 1900)9 and English Wordnet (Miller et al., 1990)10.

4 WSA of Sanskrit-English and Sanskrit-Hindi of Apte

Apte Sanskrit-English (AP90) dictionary (Apte, 1890) has been used in this experiment. The
later 1957 version (AP) of the dictionary (Apte et al., 1957) is still under copyright. Therefore
CDSD does not have its data for open usage. AP90 is not fully marked up to show different
word senses separately. It has some rudimentary markup or patterns by the help of which crude
parsing was done and word meanings were separated. Apte Sanskrit-Hindi (ASH) dictionary
(Apte, 2007) is a Hindi translation of Apte’s Sanskrit-English dictionary. It is not an exact
translation. Many of the words have been omitted, and many meanings have been merged,
deleted, or separated. It seems that ASH had the advantage of using the data of the 1957
edition too. Therefore, the new words or meanings added in that edition are also used in ASH.
At the same time, ASH has been made more concise. Therefore, multiple meanings have been
combined together. Rare meanings have been dropped altogether too. Therefore, it was not
trivial to align the word senses in these two dictionaries, and hence, these were taken up to
attempt word sense level alignment between them.

4https://pypi.org/project/rapidfuzz/
5https://www.sanskrit-lexicon.uni-koeln.de/scans/AP90Scan/2020/web/webtc/download.html
6Developed by the SHMT (Sanskrit-Hindi Machine Translation) consortium during 2008-2011, now a part of

Samsaadhanii Platform at https://sanskrit.uohyd.ac.in/scl/
7https://www.sanskrit-lexicon.uni-koeln.de/scans/WILScan/2020/web/webtc/download.html
8https://www.sanskrit-lexicon.uni-koeln.de/scans/YATScan/2020/web/webtc/download.html
9https://www.gutenberg.org/files/29765/29765-0.txt

10https://github.com/fluhus/wordnet-to-json/releases/download/v1.0/wordnet.json.gz

4

4.1 Gold Standard Data
As there is no previously existing gold standard data regarding word sense alignment of un-
structured lexical resources like a dictionary pair, a manual gold standard data was created by
selecting a random starting point and taking roughly 1000 ASH entries starting therefrom (See
Table 1). Corresponding entries of AP90 were also taken up (See Table 2).

Head word Hindi sense_id (ASH) Hindi Meaning (ASH)
आकपः (Ākalpaḥ) 247 आभषूण, अलंकार
आकपः (Ākalpaḥ) 248 वशेभषूा
आकपः (Ākalpaḥ) 249 रोग, बीमारी

Table 1: sample ASH entries

Head word English sense_id (AP90) English Meaning (AP90)
आकपः (Ākalpaḥ) 440 An ornament, decoration
आकपः (Ākalpaḥ) 441 Dress (in general), accoutrement
आकपः (Ākalpaḥ) 442 Sickness, disease
आकपः (Ākalpaḥ) 443 Adding to, increasing

Table 2: sample AP90 entries

Every word sense had been given a unique identifier for both dictionaries. A manual exam-
ination of the data was done and a manual mapping was created. As and when some parsing
error was detected in the data, the same was manually corrected. Sample entries of the sense
alignment of entries from ASH and AP90 are shown in Table 3.

Head word Hindi sense_id (ASH) English sense_id (AP90)
आकपः (Ākalpaḥ) 247 440
आकपः (Ākalpaḥ) 248 441
आकपः (Ākalpaḥ) 249 442
आकपः (Ākalpaḥ) - 443

Table 3: Gold Standard Data for Alignment of ASH and AP90

Since the two dictionaries selected had different target languages, for aligning the entries,
we decided to use Google Translate to translate the meanings of AP90 into Hindi. In Table
4, column GSH shows the Google translation of the entries in AP90 into Hindi. The task at
hand is to map the English sense_id to Hindi sense_id using GSH. Please note that sometimes
Google Translate does not translate some difficult words like ’accoutrement’ and leave them as
they are, when processed via bulk upload.

Head word English
sense_id
(AP90)

English Meaning (AP90) GSH

आकपः (Ākalpaḥ) 440 An ornament, decoration एक आभषूण, सजावट
आकपः (Ākalpaḥ) 441 Dress (in general), accoutrement पोशाक (सामाय रूप स)े, accoutrement
आकपः (Ākalpaḥ) 442 Sickness, disease रोग, रोग
आकपः (Ākalpaḥ) 443 Adding to, increasing जोड़ना, बढ़ाना

Table 4: sample AP90 entries along with their Hindi Translations

5

Similarly, entries of ASH were translated into English with the help of Google translate. Please
see column GSE of Table 5.

Head word Hindi sense_id (ASH) Hindi Meaning (ASH) GSE
आकपः (Ākalpaḥ) 247 आभषूण, अलंकार jewelery , Ornament
आकपः (Ākalpaḥ) 248 वशेभषूा Costumes
आकपः (Ākalpaḥ) 249 रोग, बीमारी Disease , Disease

Table 5: sample ASH entries along with their English Translations

In the next section, we present various algorithms, and their performance on the gold standard
data.

4.2 Algorithms
Our algorithms are based on simple string-level similarity measures. We define four different
units of comparison, and four different units of measure for comparison resulting in 16 different
algorithms. We describe them below.

4.2.1 unit of comparison
The three basic units we propose are words, shingles (n-grams at character levels), and syllables.
While glancing at the ASH entries with GSH manually, we also realized that in the case of
languages like Hindi, depending upon the presence of post-positions, the last character of the
word is changed as in ‘baharā’ (बहरा) versus ‘bahare’ (बहर)े. Hence we decided to consider a word
with the last character trimmed also as a unit of comparison.

4.2.2 measure of comparison
We have identified four different measures for calculating the similarity. Suppose the meanings
from two dictionaries are stored as a list of words L1 and L2. l1 and l2 are sets of unique words
amongst L1 and L2 respectively. In the following notation, |A| denotes the cardinality of set A.
The four different measures are defined as

m1 =
|L1 ∩ L2|
|L1 ∪ L2|

m2 =
|l1 ∩ l2|
|l1 ∪ l2|

m3 =
|L1 ∩ L2|

|L1|

m4 =
|l1 ∩ l2|
|l1|

The phrases describing the senses are tokenised and stop-words are removed. In the case of
English, all the words are converted to lower case. Let us assume the two senses that need to
be aligned are ‘space, place in general’ and ‘free space or vacuum’. As a first step the phrases
are tokenised and the stop words are removed, and the words are changed to lower case. This
results into two word lists

6

L1 = [“space”, “place”, “general”], and
L2 = [“free”, “space”, “vacuum”]

As there are no duplicate words in any of these two word lists, l1 = L1 and l2 = L2. Thus,
for the above lists m1 = 1

6 ; m2 = 1
5 ; m3 = 1

3 ; m4 = 1
3

The shingles for each word are the all possible n-grams of characters. Thus,
shingles(“space”) = [“s”, “sp”, “spa”, “spac”, “space”, “p”, “pa”, “pac”, “pace”, “a”, “ac”,
“ace”, “c”, “ce”, “e”].

The trimmed words are obtained by trimming the last character of the word. So the trimmed
word list for L1 is [“spac”, “plac”, “genera”]. While, we do not see this trimmed word list of
any advantage in the case of English, for languages like Hindi these are useful. For example,
in the word mapping the words ‘baharā’ (बहरा) and ‘bahare’ (बहर)े will not match, but after
trimming the last phoneme, both the words will match ‘bahar’.

With the 4 units of comparison and 4 units of measures of similarity, there are 16 different
measures for judging the similarity between the two senses. These 16 measures are shown in
Table 6.

unit m1 m2 m3 m4

word CR1 CR2 CR3 CR4
shingles CR5 CR6 CR7 CR8
trimmed word CR9 CR10 CR11 CR12
syllable CR13 CR14 CR15 CR16

Table 6: Metrics used for evaluation

A threshold of 0.2 was defined to ignore the mappings with low similarity score. Another
measure delta was also calculated. It is the difference between the word sense pair across
dictionaries with the highest similarity score and the second best pair. If delta is high, it means
that the pair at the first rank is ahead of the second rank comfortably. A threshold value of
delta was kept at 0.1.

4.3 Evaluation on Gold Data
After setting these thresholds, the comparison of the results of all algorithms was made. The
gold standard comprises of 2022 word sense pairs manually validated. The results of some of
the standard algorithms implemented by rapidfuzz library are shown in Table 7.

Algorithm Pairs identified Percentage Algorithm Pairs identified Percentage
Levenshtein 1793 88.67% Damerau 1794 88.73%
Hamming 1688 83.48% Indel 1822 90.11%
Jaro 1816 89.91% Jaro-Winkler 1818 89.91%
OSA 1793 88.67% Prefix 1749 86.50%
Postfix 1690 83.58%

Table 7: Percentage of word sense pairs correctly identified from gold standard data by already
existing algorithms

With the same thresholds, the results obtained from algorithms CR1 to CR16 are shown in
Table 8.

7

Algorithm Pairs identified Percentage Algorithm Pairs identified Percentage
CR1 1866 92.28% CR9 1861 92.04%
CR2 1871 92.53% CR10 1865 92.24%
CR3 1855 91.74% CR11 1848 91.39%
CR4 1856 91.79% CR12 1847 91.35%
CR5 1856 91.79% CR13 1847 91.35%
CR6 1887 93.32% CR14 1878 92.87%
CR7 1858 91.89% CR15 1841 91.04%
CR8 1863 92.14% CR16 1851 91.54%

Table 8: Percentage of word sense pairs correctly identified from gold standard data by various
algorithms

As can be seen from the results, CR6 gave the best result of all the algorithms. Therefore,
the algorithm CR6 was selected out of these algorithms. CR6 makes use of shingles and hence
captures various features like terminal case removal, textual similarity between tatsama words
and tadbhava words, common verb or common noun in compounds etc. This may be the reason
why CR6 gives better result than other algorithms.

4.4 Evaluation on complete dictionaries
CR6 was applied to the complete dictionaries ASH (D1) and AP90 (D2). As AP90 definitions
are in English language and ASH definitions are in Hindi language, both were translated with
the help of Google Translate and an English version of ASH (E) and a Hindi version of AP90 (H)
were created. D1 and H were compared against each other (both with Hindi definitions) and D2
and E were compared against each other (both with English definitions). Having comparisons
with both the languages helped in a big way. There are cases where one language is insufficient
to map satisfactorily, but the other language could map without any difficulty. Let us see such
a case with an example.

D1.91 जो चरुाय े जान े के योग्य न हो, या हटाय े जान े अथवा दूर ले जाय े जान े के योग्य न हो
D1.92 शधालु, िनठावान ्
D1.93 दृढ़,अिवचल,अनननुये
D1.94 पहाड़

Table 9: Entry of the word ‘अहाय र्’ in the ASH (D1) dictionary

D2.1916 not to be stolen, removed or carried
D2.1917 not to win (by fraud), devoted, loyal
D2.1918 firm, steadfast, hard
D2.1919 a mountain

Table 10: Entry of the word ‘अहाय र्’ in the AP90 (D2) dictionary.

As can be seen from the contents the four senses of D1 correspond sequentially to the four
entries of D2.

Now, let us look at the Google translations of D1 into English and D2 into Hindi.
Had we used only translation of AP90 into Hindi through Google translator, and compared

it with the entries in ASH, the words ‘पहाड़' (D1.94) and ‘एक पवर्त’ (H.1919) will not get good
similarity score. However, the same words when translated to English will be highly similar viz.
‘a mountain’ (D2.1919) and ‘Mountain’ (E.94). Therefore, the similarity score with English
as the destination language will be very high. Similarly, ‘शधालु, िनठावान ्’ will not match ‘समिपत,

8

E.91 Unstealable, or not capable of being removed or taken away
E.92 Devotees , loyal
E.93 Strong , motionless , irresistible
E.94 Mountain

Table 11: Entry of ASH translated to English via Google Translate (E)

H.1916 चोरी, हटाया या ले जान े के िलए नहीं
H.1917 जीतन े के िलए नहीं (धोखाधड़ी स)े, समिपत , वफादार
H.1918 दृढ़, अिडग, कठोर
H.1919 एक पवर्त

Table 12: Entry of AP90 translated to Hindi via Google Translate (H)

वफादार’ much at character level, but ‘devoted, loyal’ will match ‘Devotees, loyal’ at character
level. There are also cases where Hindi fares better. Mapping ‘फँसा हुआ’ with ‘फँसा हुआ’ is easier
than mapping ‘trapped’ and ‘entangled’ (D1.342 and D2.556). Thus, using two languages
helps us to take care of some cases where one language uses different synonyms and the other
language has only one word for the concept or may have used the same word out of available
synonyms.

Creating mapping with two languages also gives us some more benefits. It give us more
confidence about a given mapping if both the languages give the same mapping. Based on these
insights, an analysis of the mappings of gold standard data and full dictionary data was carried
out. We classify the confidence levels of machine into 7 different categories. These categories
are shown in Table 13 with their correspondence confidence levels.

Category Description Confidence
A Both languages give above sim_threshold, and both lan-

guages give the same first match
High

B (Language1 above sim_threshold, and Language2 gives
lower similarity score) or (Language2 above sim_threshold,
and Language1 gives lower similarity score)

High

C Headword present in only one dictionary, and absent in the
other

High

D Both languages give below sim_threshold, and both lan-
guages give the same first match

Low

E (Language1 below sim_threshold, but better than Lan-
guage2) or (Language2 below sim_threshold, but better
than Language1)

Low

F Headword present in both dictionaries, but all entries of
dictionary1 have already been assigned to other entries of
dictionary2 or vice versa. Hence, there is no mapping

High

G Force mapped, as this is the only remaining match High

Table 13: Categorization of various mappings along with their confidence level

Analysis of gold standard data with these codes yielded the following results (See Table 14).
It is worth noting that the machine generated a total of 2096 mappings. The gold standard

data has 2022 mappings. It is because the machine does not know what are the number of
mappings present in the gold standard data. Word senses may have one-one, one-many and
many-one mappings. Therefore, it is not possible to determine in advance how many word sense

9

Category Pairs in the category Percentage
A 636 30.34 %
B 221 10.54 %
C 738 35.21 %
D 60 02.86 %
E 59 02.81 %
F 360 17.18 %
G 22 01.05 %
Total 2096 100 %

Table 14: Categorization of gold standard mapping generated via algorithm CR6

mappings are to be generated. Therefore, the machine generated a total of 2096 mappings.
Among these, the entries falling in the category of D and E have low confidence. Thus roughly
5-6% cases are such which are of low quality and would improve with human intervention. Rest
of 94-95% cases can be mechanically aligned, saving precious resources. As the gold standard
data was corrected as and when some parsing error or typographic error was seen, the error rate
in gold standard data is much less. Whereas, there was no attempt made to clear these kind
of errors in full dictionaries. Therefore, the error rates in the full dictionaries is more than the
gold standard data.

The following are the results of application of the above methodology to full dictionaries Apte
Sanskrit–Hindi (ASH) and Apte Sanskrit–English (AP90) (See Table 15).

Category Pairs in given category Percentage
A 51964 32.59 %
B 16655 10.44 %
C 47131 29.56 %
D 9730 06.10 %
E 6258 03.92 %
F 25710 16.12 %
G 2023 01.27 %
Total 159471 100%

Table 15: Categorization of word sense mappings generated by algorithm CR6 for Apte Sanskrit-
Hindi and Apte Sanskrit-English dictionaries

Roughly 10% of cases fall under low confidence zone, which may require human intervention.
Three random numbers were selected and 100 entries starting therefrom were examined for false
positives. The following is the result. (See Table 16)

A B C D E F G False Positives/total pairs
01 14 00 01 10 00 04 30/300

Table 16: False positives from randomly selected mappings

Thus, manual examination also yields around 10% error rate.

5 Mapping other dictionaries

Similar exercise was also tried for different dictionary pairs like (1) Apte Sanskrit-English and
Monnier Williams Sanskrit-English dictionary11 (2) Wilson Sanskrit-English and Yates Sanskrit-

11https://www.sanskrit-lexicon.uni-koeln.de/scans/MWScan/2020/web/webtc/download.html

10

English dictionary and (3) English WordNet and Webster’s English dictionary. The results are
shown in Table 17.

Category Apte – MW Wilson – Yates WordNet – Webster
A 17.84 % 53.22 % 09.43 %
B 04.53 % 11.40 % 03.90 %
C 53.12 % 13.44 % 61.83 %
D 08.39 % 07.99 % 06.92 %
E 02.78 % 04.80 % 05.01 %
F 12.70 % 08.03 % 11.68 %
G 00.64 % 01.13 % 01.23 %

Table 17: Categorization of mappings for various dictionary pairs

Thus, in almost all dictionary pairs studied, the error rate (D+E) is roughly to the tune of
11-13%. These are the places where human annotators can make maximum impact by manual
examination and correction.

6 Way ahead
We are exploring the possibility of using graph based similarity scores or semantic measures
such as LSA or ESA to find out similarity in cases where text based similarity scores are below
threshold. These approaches are computationally heavy and may require more computational
resources. In the present case, the thresholds of similarity scores were chosen empirically or
rather arbitrarily. It may be possible to learn these thresholds by optimizing its F-scores. As
the gold standard (training data) is quite small, this exercise is not yet tried. Once we have
large manually validated data, it will be worthwhile to find out the optimum thresholds with
statistical methods.

The present methodology can be expanded to other language pairs and check whether findings
in different language pairs are similar or otherwise. Effect of quality of translation services like
Google Translate between different language pairs may add a cascading effect on the perfor-
mance.

7 Conclusion
Undertaking the task of mapping of dictionaries at the level of word sense seems daunting at
first, but after experimenting with a few dictionary pairs, it was only 11-13% of word senses
that required manual examination by human expert. Once a quick implementation having an
accuracy of 87-90% is created by machine, human annotators / users can be given an option
to change the mapping if they feel that the mapping generated by the machine is incorrect. It
holds immense potential to expand sense-mapped text resources from one language to another.
It will particularly help the users of languages which are having scarce resources e.g. a Sanskrit
work which has been disambiguated and sense-mapped in English with help of Sanskrit-English
dictionary can be extended to the users of, say, French language by mapping Sanskrit-English
dictionary to Sanskrit-French dictionary at word sense level.

References
Eneko Agirre and Philip Edmonds. 2007. Word sense disambiguation: Algorithms and applications,

volume 33. Springer Science & Business Media.

Vāmana Śivarāma Apte, Paraśurāma Kriṣṇa Gode, Cintāmaṇa Gaṇeśa Karve, and Kaśinātha Vāsudeva
Abhyankara. 1957. Revised and Enlarged edition of Prin. V. S. Apte’s The Practical Sanskrit-English
Dictionary. Prasad Prakashan, Poona.

11

Vaman Shivram Apte. 1890. The Practical Sanskrit-English Dictionary, containing Appendices on San-
skrit Prosody and important Literary & Geographical names in the ancient history of India. Shiralkar
& Co. Book-sellers, Budhwar Peth, Poona.

Vaman Shivram Apte. 2007. Sanskrit-Hindi Kośa. Motilal Banarsidass, Delhi.

Collin F Baker, Charles J Fillmore, and John B Lowe. 1998. The Berkeley FrameNet project. In COLING
1998 Volume 1: The 17th International Conference on Computational Linguistics.

Eduard Bejcek, Václava Kettnerová, and Markéta Lopatková. 2014. Automatic mapping lexical resources:
A lexical unit as the keystone. In LREC, pages 2826–2832.

Pushpak Bhattacharyya. 2010. Indowordnet. lexical resources engineering conference 2010 (lrec 2010).
Malta, May.

Daniel Bär, Torsten Zesch, and Iryna Gurevych. 2013. Dkpro similarity: An open source framework
for text similarity. In Proceedings of the 51st Annual Meeting of the Association for Computational
Linguistics: System Demonstrations, pages 121–126.

CDSD. 2023. Cologne Digital Sanskrit Dictionaries. Cologne University, Cologne. version 2.4.123,
accessed on 20 September 2023, at https://www.sanskrit-lexicon.uni-koeln.de.

Fred J Damerau. 1964. A technique for computer detection and correction of spelling errors. Communi-
cations of the ACM, 7(3):171–176.

Evgeniy Gabrilovich and Shaul Markovitch. 2007. Computing semantic relatedness using Wikipedia-
based explicit semantic analysis. In IJCAI, volume 7, pages 1606–1611.

Pawan Goyal, Gérard Huet, Amba Kulkarni, Peter Scharf, and Ralph Bunker. 2012. A distributed
platform for Sanskrit processing. In Martin Kay and Christian Boitet, editors, Proceedings of COLING
2012, pages 1011–1028, Mumbai, India, December. The COLING 2012 Organizing Committee.

Richard W Hamming. 1950. Error detecting and error correcting codes. The Bell System Technical
Journal, 29(2):147–160.

Gérard Huet. 2019. Sanskrit lexicography, past and future. In Li Wei, editor, Research on the Language
and Script in Buddhist Sutras. Hangzhou Buddhist Academy.

Matthew A Jaro. 1989. Advances in record-linkage methodology as applied to matching the 1985 census
of tampa, florida. Journal of the American Statistical Association, 84(406):414–420.

Jay J. Jiang and David W. Conrath. 1997. Semantic similarity based on corpus statistics and lexical
taxonomy. arXiv preprint cmp-lg/9709008.

Richard Johansson and Luis Nieto Pina. 2015. Embedding a semantic network in a word space. In
Proceedings of the 2015 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages 1428–1433.

Salil Joshi, Arindam Chatterjee, Arun Karthikeyan Karra, and Pushpak Bhattacharyya. 2012. Eating
your own cooking: automatically linking WordNet synsets of two languages. In Proceedings of COLING
2012: Demonstration Papers, pages 239–246.

Thomas K Landauer, Peter W Foltz, and Darrell Laham. 1998. An introduction to latent semantic
analysis. Discourse processes, 25(2-3):259–284.

Vladimir I. Levenshtein. 1966. Binary codes capable of correcting deletions, insertions, and reversals.
Soviet physics doklady, 10(8):707–710.

George A Miller, Richard Beckwith, Christiane Fellbaum, Derek Gross, and Katherine J Miller. 1990.
Introduction to wordnet: An on-line lexical database. International journal of lexicography, 3.4:235–
244.

George A Miller. 1995. WordNet: a lexical database for English. Communications of the ACM, 38(11):39–
41.

Alvaro Monge and Elkan Charles. 1997. An efficient domain-independent algorithm for detecting ap-
proximately duplicate database records. In Proc. of the ACM-SIGMOD Workshop on Research Issues
on Knowledge Discovery and Data Mining.

12

Philip Resnik. 1995. Using information content to evaluate semantic similarity in a taxonomy. arXiv
preprint cmp-lg/9511007.

Ana Salgado, Sina Ahmadi, Alberto Simoes, John McCrae, and Rute Costa. 2020. Challenges of word
sense alignment. In Proceedings of the LREC 2020 7th Workshop on Linked Data in Linguistics
(LDL-2020), pages 45–51. European Language Resources Association (ELRA).

Karin Kipper Schuler. 2005. VerbNet: A broad-coverage, comprehensive verb lexicon. University of
Pennsylvania.

Robyn Speer, Joshua Chin, and Catherine Havasi. 2017. Conceptnet 5.5: An open multilingual graph of
general knowledge. In Proceedings of the AAAI conference on artificial intelligence, volume 31(1).

Claus Vogel. 2015. Indian Lexicography. Motilal Banarsidass, Delhi.

Piek Vossen. 1998. A multilingual database with lexical semantic networks. Dordrecht: Kluwer Academic
Publishers. doi, 10:978–94.

Noah Webster. 1900. Webster’s unabridged dictionary of the English language. Kikwansha.

H. H. Wilson. 1832. A Dictionary in Sanscrit and English; Translated, Amended, and Enlarged from an
Original Compilation, Prepared by Learned Natives for The College of Fort William. Parbury, Allen
& Co., London, second edition.

William E. Winkler. 1990. String comparator metrics and enhanced decision rules in the fellegi-sunter
model of record linkage. The Educational Resource Information Center (ERIC).

Michael J Wise. 1996. Yap3: Improved detection of similarities in computer program and other texts. In
Proceedings of the twenty-seventh SIGCSE technical symposium on Computer science education, pages
130–134.

W. Yates. 1846. A Dictionary in Sanscrit and English, Designed for the Use of Private Students and of
Indian Colleges and Schools. Baptist Mission Press, Calcutta.

13

Context and WSD: Analysing Google Translate’s Sanskrit to
English Output of Bhagavadgītā Verses for Word Meaning

Anagha Pradeep
Language Technology Research Centre
International Institute of Information

Technology Hyderabad, India
anagha.pradeep@research.iiit.ac.in

Radhika Mamidi
Language Technology Research Centre
International Institute of Information

Technology Hyderabad, India
radhika.mamidi@iiit.ac.in

Pavankumar Satuluri
Department of Humanities and Social Sciences

Indian Institute of Technology
Roorkee, India

pavankumar.satuluri@hs.iitr.ac.in

Abstract

In addition to innate human intelligence, having access to extensive context and world
knowledge is a crucial factor that aids in comprehending natural language, making it
smooth and effortless to understand words with multiple meanings for humans. Although
machines lack intrinsic intelligence, their capacity to learn language can greatly improve
with access to more data, which serves as valuable context. In Natural Language Pro-
cessing (NLP), the task of identifying and attributing the right sense of a word in a given
context is called Word Sense Disambiguation (WSD). WSD, as a sub-task, plays a crucial
role in several NLP applications such as Machine Translation. Every language has a set
of words that have multiple senses. Sanskrit, one of the ancient and classical languages
of the Indian subcontinent is no exception to this. Like many other languages with a
rich literary tradition, Sanskrit features a multitude of polysemous words. However, it is
essential to acknowledge that the data used to train machine models on Sanskrit is con-
siderably less compared to European and a few other Indian languages. Consequently,
the task of disambiguating word senses in Sanskrit presents a highly complex challenge
for machines, especially when considering the unique and rich nature of its literary lan-
guage. The purpose of this paper is to delineate the potential areas where the infusion of
additional data can enhance language learning, through a manual error analysis taxon-
omy focused on the Bhagavadgītā. Our analysis will delve into the translation outcomes
produced by Google Translate, which is considered the state-of-the-art tool for handling
Sanskrit and other languages with limited available resources.

1 Introduction
Language is the foremost factor that sets apart humans from other beings. Humans possess
the innate ability to understand, analyze and express thoughts through languages. This also
means that the process of disambiguating a word having multiple senses is fundamentally natural
and effortless in humans, specifically considering the access humans have to context and world
knowledge. An exponential growth in the domain of Artificial Intelligence (AI) with an aim
of having machines that can simulate human behavior in analyzing and interpreting natural
languages is evidently witnessed. Natural Language Processing (NLP) applications like Machine
Translation (MT) deal with language complexities among which subtasks such as Word Sense
Disambiguation (WSD) are also dealt with. WSD has been a long standing problem in the
domain of Computational linguistics and NLP. It is necessary to determine the meaning of each

14

word in a context, in order to make sense of the text (Itankar and Raza 2020). Nonetheless, it
must be acknowledged that this pursuit is far from a straightforward undertaking for a machine.
Language modeling has been very helpful in advancing machines in language intelligence. Pre-
trained Language Models (PLMs) such as Transformers use large scale unlabelled corpora for
their training and have shown great progress in various NLP tasks (Zhao et al. 2023). In 2022,
Google Translate, which uses the Transformer architecture, expanded its language repertoire to
include Sanskrit and 23 other languages bringing the total number of translatable languages to
1331. Similar to numerous other languages, Sanskrit, the ancient classical language of the Indian
subcontinent, includes a wide range of words with multiple senses. The unique nature of the
language within the realm of literature adds an additional layer of complexity in disambiguating
the word senses. Google enlists languages that have been trained using monolingual data and
zero-resource MT as “long-tail languages” among which Sanskrit is one. These are the languages
that do not have as much corpora for training the language model as do most European languages
and a few Indian languages such as Hindi and Tamil (Bapna et al. 2022). This paper attempts
to outline the importance of increased context in the form of training data for Sanskrit, through
a manual error analysis of word meanings in the translation output of Bhagavadgītā (BhG). It
proposes a taxonomy for word meaning errors and further explores the potential areas where an
increase in contextual knowledge could bring about an enhancement in ambiguity resolution.

The paper is structured as follows: We will begin by discussing our rationale for selecting the
BhG for translation in the subsequent section. This will be succeeded by a concise review of
pertinent prior research. Moving on to the fourth section, we will provide a detailed account of
the experiment and its subsequent analysis. Finally, in the fifth section, we will offer insights
into additional observations gleaned from extensive experiments.

2 Motivation to choose Bhagavadgītā
BhG is a part of the well-known Indian epic, the Mahabharata. It can be found in the Bhīṣma-
parva which is the sixth book of the epic. This text containing seven hundred verses, is a
philosophical masterpiece that presents a conversation between Lord Kṛṣṇa and Arjuna, the
Pāṇḍava prince on the battlefield of Kurukṣetra. On seeing his own relatives and loved ones
on the opposing side of the battle, Arjuna is faced with a moral conflict about participating
in the battle. In this moment of crisis, Lord Kṛṣṇa imparts spiritual wisdom to address Ar-
juna’s concerns and inspires him to fulfill his duty (Mukundananda 2022). Numerous thinkers
and scholars, spanning from Adi Shankaracharya (H. K. Goyandka 2015) to modern figures like
Alladi Mahadeva Sastry (Sastry 2004), Mahatma Gandhi (Gandhi 2014), Swamy Dayananda
Saraswati (Saraswati 2007), Eknath Easwaran (Easwaran 2009), and many more, have found
profound fascination with this revered philosophical masterpiece, each offering their own unique
interpretations. The impetus for this study arises from our curiosity to witness how a machine
would undertake the translation of such a profound text. It is fascinating to observe where the
machine excels and where it encounters challenges in the process.

3 Related Work
In 2022, Google Translate expanded its language repertoire to include Sanskrit. During the same
year, a paper was published, focusing on the semantic and sentiment analysis of BhG translations
in English using a language framework based on BERT (Chandra and Kulkarni 2022). This
study employed three distinct translations by experts to develop a framework for analyzing
the semantic and sentiment aspects of selected verses from the BhG. Subsequently, another
paper evaluating the performance of Google Translate in translating the BhG into English was
published in 2023. The output from Google Translate was compared to expert translations using
sentiment and semantic analysis via BERT-based language models, serving as a continuation
of the previous research (Shukla et al. 2023). As far as our knowledge extends, these studies

1https://blog.google/products/translate/24-new-languages/accessed on August 5th 2023

15

represent the primary investigations into the evaluation of machine translation outputs of the
BhG. It is also important to note that the error analysis of semantic relations mentioned in the
papers above involves an automated process of measuring semantic similarity between Google’s
English translation output and expert human English translations. And is therefore crucial to
recognize that this approach significantly differs from the methodology employed in the present
study.

In addition to these studies, (Popović 2020) proposes a new method of manual evaluation for
Machine Translation output. They adhere to an issue marking strategy rather than a scoring
or classifying one. The paper studies Croatian and Serbian outputs of IMDb (Internet Movie
Database) movie reviews and Amazon product reviews from three different online MT systems
viz: Google Translate2, Amazon Translate3 and Bing4. It concludes that out of the three
MT systems Google generates the most comprehensible translations for both target languages.
Usage of MT systems for literary works is not very common yet. This is possibly because of
the unique structure of the language that literature carries. The usage of figurative devices,
metaphors, idioms, irony and so on, makes it hard for machines to translate, often leading to
literal translations that are incorrect. Nevertheless, there have been some studies in this area.
(Omar and Gomaa 2020) evaluate the usefulness of applying machine translation systems to
literature with a view of identifying challenges that may have negative impacts on the reliability
of machine translation systems. The study uses two MT systems Google Translate and Q
Translate5 to translate two short stories Harry Potter and The Black Cat from English to
Arabic. Although they conclude on how both MT systems have performed badly at various
levels, we can observe that the error rate in Google Translate was comparatively lesser. In
general, the evaluation of MT systems whether automatic or manual is done on the entire
translation covering adequacy, comprehensibility, and grammaticality (Popović 2020). However,
our work focuses only on errors in word meanings and offers a taxonomy of these errors.

4 Experiment
4.1 Data Collection
The Sanskrit verses of the BhG utilized in this study as the source language were obtained
from a Sanskrit computational toolkit named Samsaadhanii6. For the translation aspect, the
translation outputs were self-acquired through the Google Translate API7, a widely employed
tool for automated translation. This combination of original Sanskrit verses and translated
content forms the foundation of our dataset for analysis8.

4.2 Analysis
Words are the fundamental building blocks of any text, and their accurate interpretation plays
a key role in understanding the text as a whole as well as preserving its essence. Therefore, the
aim of this study is to observe errors in word meanings and categorize them. To achieve this a
comprehensive manual examination of each word in the Google translation output of BhG was
conducted to ascertain its alignment with the intended meaning of the corresponding Sanskrit
word. Two reference translations of the BhG namely Jayadayal Goyandaka’s “Bhagavad Gīta
Tattvavivecanī” (J. Goyandka 2011) and Swami Mukundananda’s “Bhagavad Gita The Song of
God” (Mukundananda 2022) were employed for this process. Additionally, support was derived
from the Monier Williams Sanskrit English dictionary (Monier-Williams 1899) to augment the
accuracy of the analysis. Given that the scope of this taxonomy-based analysis was specifically

2https://translate.google.co.in/
3https://ai-service-demos.go-aws.com/translate
4https://www.bing.com/translator
5https://qtranslate.en.softonic.com/?ex=CS-1680.3
6https://sanskrit.uohyd.ac.in/Corpus/
7https://cloud.google.com/translate
8Translations of all the BhG verses were obtained through Google Translate API on 31st January 2023

16

confined to word meanings, the errors identified were categorized into four distinct groups, which
are:

1. Errors arising from polysemous words.

2. Errors stemming from compounding.

3. Errors originating from words that are knowledge sensitive.

4. Errors springing from incorrect meaning attribution.

We will go through each of these categories of errors in detail with examples for a clearer
understanding.

Errors arising from polysemous words:
Words that have multiple senses are known as polysemous words (Agirre and Edmonds 2007).
Given such a word, context plays a crucial role in disambiguating which sense of the word is
to be taken. For instance, the word ह र(hari) in Sanskrit has fourteen meanings such as snake,
lion, Vishnu (lord), sun, moon, air, Yama (god of death), Indra (lord of deities), rays, horse,
parrot, monkey, frog and the colour yellow9. Given the word ह र(hari), the machine should be
able to aptly choose the right sense of the word based on its context among various possible
interpretations. This task is known as Word Sense Disambiguation (Navigli 2009). The outputs
received on Google Translate for the following inputs are given below10.

Sanskrit Sentence English Translation
ह रः खादित Hari eats

ह रः कदल फलं खादित Hari eats bananas
ह रः वकृ्षेऽिस्मन ् कदल फलं खादित The monkey is eating bananas on this tree

Table 1: Sanskrit Sentences and English Translations

The outputs clearly indicate that when provided with additional contextual information, the
machine’s ability to disambiguate the sense of the polysemous word "ह र"(hari) becomes more
refined. This enhanced disambiguation capability demonstrates the importance of context in
NLP tasks. Nonetheless, within the translation outputs we generated, it is important to note
that 139 out of the 700 verses contained errors attributable to the incorrect selection of senses
for polysemous words. We further categorized this list of verses into two. The former comprised
verses in which the error-identified polysemous word’s meaning could potentially be adjusted
by altering the context. In contrast, the latter encompassed verses in which the meaning of
polysemous words remained unchanged regardless of contextual modifications.
An example for the first category is:

अ प चदेिस पापभे्य: सवभ्य: पापकृ म:। सव ज्ञान वनेवै विृजनं सन्त रष्यिस ।।4.36।।
Translation: Even if you are the most sinful of all sinners You will cross all troubles by the

float of knowledge.��4.36��

In this verse, the word व(plava) has multiple senses such as float, frog, monkey, boat, sheep,
enemy and so on11.
The sense to be taken here is “boat”. However, the machine also recognizes the sense “boat”
given an alteration in the context.
रामः वने नद ं तरित

9https://sanskrit.uohyd.ac.in/scl/amarakosha/frame.html
10Translations for all the sample sentences were obtained between 15th August and 8th September 2023
11The dictionary entries for the various words discussed throughout this paper are given in Appendix A

17

Translation: Rama crosses the river by boat.

Similarly, another example for the first category is a very famous verse from the Gītā.
यदा यदा ह धमर्स्य ग्ला नभर्वित भारत। अभ्यतु्थानमधमर्स्य तदात्मानं सजृाम्यहम ् ॥4.7॥

Translation: Whenever there is a loss of religion, O Bhārata, When irreligion arises, I create
Myself. ��4.7��

The word धमर्(dharma) has been wrongly identified with the sense religion. The appropriate
sense to be used in this context is “righteousness”.
Google Translate can also identify other senses of this word given different contexts such as:
उष्णत्वम ् अ ःे धमर्ः
Translation: Heat is the righteousness of fire.
कुम्भकारस्य धमर्ः कुम्भकरणम ्
Translation: The duty of the potter is to make pottery.

Let us now go through examples for the second category.
कं कमर् कमकमित कवयोऽप्यऽ मो हता:। त े कमर् ूव ा म यज्ज्ञात्वा मो सऽेशभुात ् ।।4.16।।

Translation: Even the poets are confused here as to what is action and what is inaction I will
tell you that action which, knowing it, you will be freed from evil.��4.16��

In the above verse, the word क व(kavi) is polysemous. It has several meanings including a wise
person, a poet, names of several deities, and so on. The sense that fits well in this context is “a
wise person or a thinker”. Although the context was modified, the machine did not recognize
the other senses associated with this word.
क वः सवर्दा सन्माग एव चलित
Translation: The poet is always on the right path.
साध्वसाधु ववचेने क वः नपणुः
Translation: The poet is adept at distinguishing between right and wrong.

The same is the case of the word दवै(daiva). Despite the multiple senses such as celestial, divine,
royal, destiny, and others that the word carries, the translation output irrespective of the context
has only been “destiny”.

दवैमवेापरे यज्ञं यो गन: पयुर्पासत।े ॄ ा ावपरे यज्ञं यज्ञेनवैोपजु ित ।।4.25।।
Translation: Other yogis worship destiny as the sacrifice Others offer the sacrifice in the
Brahma-agni by the sacrifice itself.��4.25��

नमर्लराऽौ वयं आकाशे ताराचन्िा दकं दवैवस्तु ि ु ं श ु मः
Translation: On a clear night we can see the stars and moon and other objects of destiny in
the sky.
दवैवकृ्षेित सुू िस ः कल्पवकृ्षः ूािथर्तं सव दास्यित
Translation: The Kalpa tree, well known as the tree of destiny, will give everything asked for.
In the three example cases that we have seen, the senses of the polysemous word दवै(daiva) to
be taken in line with the context are celestial and or divine.

Upon examining examples for both scenarios, we observed that in the first case, the machine
was able to discern the various senses of polysemous words, only when the context was modified.
However, in the second case, even with altered context, the sense remained consistent. As per our
observation, we hypothesize that both these cases lack sufficient examples in the training data,
that cover a wide range of senses for each of the polysemous words. Thus, inducing additional
data through which the machine can learn the distinct senses as well as diverse contexts would
be of paramount importance to enhance the performance of the system.

18

Errors stemming from compounding:
In classical Sanskrit, compounding is a prevalent linguistic feature where multiple words are
merged to create a single lexeme. The purpose of this practice is to achieve brevity in language,
aiming to express the intended meaning using fewer words. Nevertheless, grasping the meaning
of compounds can be intricate due to the fact that they often possess multiple potential inter-
pretations, contingent upon contextual cues (Krishna et al. 2016). In our examination of the
translation output of the BhG, we have identified instances where meaning errors arose either
from an incorrect interpretation of the compound or from the absence of an interpretation al-
together. It is important to note that these errors were relatively infrequent. In the examples
that follow, we will delve into instances of both types of errors.

अदृ पवू हृ षतोऽिस्म दृ ा भयेन च ूव्यिथतं मनो म।े तदेव मे दशर्य देव रूपं ूसीद देवशे जगि वास
॥11.45॥

Translation: I was delighted to see something I had never seen before and my mind was
overwhelmed with fear Show me that very form, O Lord of the gods, O inhabitant of the
universe. Have mercy on me. ��11.45��
The compound जगि वास (jagannivāsa) has been translated as “inhabitant of the universe”,
which is indeed one of the possible interpretations. However, in the given context where Arjuna
is addressing Lord Krishna and praising him, a more suitable interpretation would be “the one
in whom the world resides” (जगतः नवासः). Referring to Lord Krishna as the one in whom the
world resides often carries a deeper and more profound connotation, emphasizing his divine glory,
whereas the former interpretation may not capture this essence as effectively. It is important
to note that various interpretations of the compound are dependent on the primary derivative
suffix.

In the verse,

आॄ भवुना ोकाः पनुरावितर्नोऽजुर्न। मामपुते्य तु कौन्तये पनुजर्न्म न व ते ॥ 8.16॥

Translation: O Arjuna, the worlds return to the Abrahma world. But having attained Me, O
son of Kunti, there is no rebirth. 8.16�

we see that the compound आॄ भवुनात ् (ābrahmabhuvanāt) has been translated as Abrahma
world, while the compound is to be interpreted as “upto the world of Brahma”. This shows that
the machine has not been able to interpret the compound.
Upon observation, we noticed that the occurrence of errors related to compounding in the verses
was relatively infrequent. This is likely because the training data treated compounds as single
words and therefore identified and translated them accurately. To substantiate our observation,
we quote the following examples:

Sanskrit Sentence English Translation
अहं रामालयं गच्छा म I am going to Ramalaya
अहं वद्यालयं गच्छा म I am going to school
गणशेः ल बोदरः अिस्त Ganesha is tall
भीमः वृकोदरः अिस्त Bhima is a wolf-belly

Table 2: Sanskrit Sentences and English Translations

Albeit, even in cases where the machine is trained on various interpretations of a compound,
determining which interpretation is appropriate for a specific context can still be a challenging
task.

19

Errors originating from words that are knowledge sensitive:
From our observation errors stemming from words that are sensitive to cultural, societal, or
philosophical nuances are quite common in machine-generated content. Machines often struggle
to recognize the senses of such words, particularly when those words hinge on a deep grasp of
human culture, history, or philosophy. These nuances can be challenging for machines to capture
accurately. BhG being a profound philosophical text, that is a part of ऐितहािसक (aitihāsika) text
is susceptible to such errors. Here are a couple of instances that we may look through.

पाञ्चजन्यं हृषीकेशो देवद ं धन य:। पौण्सं दध्मौ महाश ं भीमकमार् वकृोदर: ।।1.15।।

Translation: Hrishikesha married Panchajanya and Arjuna married Devadatta Bhimakarma
blew the great conch of Paundra ��1.15��

From the translation, it is apparent that the words पाञ्चजन्य, देवद , पौण्स (pāñcajanya, devadatta,
pauṇḍra) have been incorrectly recognized as names of entities and place, instead of being
correctly identified as the names of the conches used by Kṛṣṇa, Arjuna, and Bhīma. This
misinterpretation occurs due to the machine’s limitation in historical and contextual knowledge.
Another observation regarding the translation is that the verse does not contain a verb related
to “marriage”, yet the translation includes this verb twice. This discrepancy may be attributed
to instances of similar sentences in the training data.

Similarly, in the verse:

ूकृितं परुुषं चवै क्षेऽं क्षेऽज्ञमवे च। एत े दतु मच्छा म ज्ञानं ज्ञेयं च केशव ॥13.1॥
Translation: Nature, the person, the field, and the knower of the field. I wish to know this
knowledge and the knowable, O Kesava. ��13.1��

Although the words have been translated to their corresponding senses, the philosophical nuances
they carry often remain unrepresented in these. Take, for example, the word ूकृित (prakṛti);
it does not refer to nature in a general sense but is intricately linked to the specific concept
of material nature discussed in the Sāṅkhya philosophy. The machine frequently struggles to
convey these intricacies due to its inherent limitations.

Errors springing from incorrect meaning attribution:
Out of the 700 verses in the BhG, it was found that 25 verses had word translations that were
completely unrelated to their actual word meanings. Unlike polysemous words where at least
one of the listed senses was considered, in these instances, the translations provided did not align
with any of the listed meanings for the respective words. Let us take a look at a few sample
cases.

अयनषेु च सवषु यथाभागमविस्थता:। भीष्ममवेा भरक्षन्तु भवन्त: सवर् एव ह ।।1.11।।

Translation: Situated in their proper places in all the moons May you all protect Bhishma
alone. ��1.11��

The word अयन (ayana) refers to path in this context. It is wrongly translated as “moon”, which
does not correspond to any of the listed senses of the word.

Similarly, the word प रऽाण (paritrāṇa), which means “to protect”, was incorrectly translated in
the following verse.

प रऽाणाय साधनूां वनाशाय च दषु्कृताम।् धमर्ससं्थापनाथार्य सम्भवा म यगुे यगुे ।।4.8।।

20

0

50

100

150 139

25

40

12
C

ou
nt

Polysemous
Incorrect

Knowledge Sensitive
Compounding

Figure 1: Bar chart depicting the number of verses in each category

Translation: For the salvation of the righteous and the destruction of the wicked I am able to
establish righteousness in every age.��4.8��

The sense “salvation” has not been enlisted as one of the senses of the word प रऽाण (paritrāṇa).
We could not draw any conclusions regarding the reasons for these incorrect translations, except
for the possibility that the training data might have contained errors.

5 Additional Experiments

In addition to the previously mentioned error categories, we also identified a few other factors
that influenced the translation of word meanings. These factors are listed below, along with
examples.

5.1 Sandhi

Sandhi encompasses sound or form alterations occurring either at morpheme or word boundaries
(Hyman 2007). In Table 3, we have listed a few examples illustrating how the presence or absence
of sandhi influenced the translation of word meanings.

Sanskrit Sentence/Verse English Translation
ह रः वृक्षेऽ मन् कदल फलं खादित The monkey is eating bananas on this tree
ह रः वृक्षे अ मन् कदल फलं खादित Hari is eating bananas on this tree

न च मां ता न कमार्िण नब िन्त धन य। Nor do those actions bind Me, O Arjuna
उदासीनवदासीनमस तं तषेु कमर्सु ॥9.9॥ Indifferent as if indifferent, unattached to those actions.
न च मां ता न कमार्िण नब िन्त धन य। Nor do those actions bind Me, O Arjuna

उदासीनवत् आसीनम् अस ं तषेु कमर्सु ॥9.9॥ Seated as if indifferent, unattached to those actions.
चातवुर्ण्य मया सृ ं गणुकमर् वभागश:। I have created the four varnas according to the divisions of virtue and action

तस्य कतार्रम प मां व कतार्रम यम॥्4.13॥ Know Me, the inexhaustible doer, to be the doer of it
चातवुर्ण्य मया सृ ं गणुकमर् वभागश:। I have created the four varnas according to the divisions of virtue and action

तस्य कतार्रम ् अ प मां व द्ध अकतार्रम् अ यम्॥4.13॥ Know Me also as the doer of it, the inexhaustible non-doer.

Table 3: Sanskrit Sentences and English Translations

21

5.2 Playing with words
In some cases, we also observed how the absence and replacement of words in a sentence has
rendered changes in the meanings of the polysemous words in the sentence. Table 4 lists instances
of a few examples.

ये यथा मां ूप न्ते तांस्तथवै भजाम्यहम।् मम वत्मार्नवुतर्न्ते मनषु्या: पाथर् सवर्श: ।।4.11।।
Translation: I reward those who worship Me in the same way that they worship Me. Men
follow My path in every way, O Arjuna.

In the case of the word ूप न्ते (prapadyante), we needed its specific sense of “surrender” in the
given context. To explore if we could achieve the desired meaning through some modifications,
we initially transformed the metrical form into a sentence: ये यथा मां ूप न्ते तान ् तथा अहं भजा म
इित भगवान ् कृष्णः भगव ीतायाम ् अवदत.् This sentence was translated as “Lord Krishna said in the
Bhagavad Gita that I worship those who worship Me in the same way as they worship Me”.
To experiment, we decided to remove certain words from the sentence to see if we could obtain
the intended sense. Surprisingly, when we removed the word अहम ् (aham), the desired output
was achieved: भगवान ् कृष्णः भगव ीतायां ये यथा मां ूप न्ते तान ् तथा भजा म इित अवदत.्
Translation: Lord Krishna said in the Bhagavad Gita that I worship those who surrender to
Me in the same way.
However, it is to be noted that when the verse was transformed into prose, the meaning of the
word भजा म (bhajāmi) was also inadvertently altered.

Although this was not an example from the Gītā, we encountered something similar with the
word ह र (hari) as well.

Sanskrit Sentence English Translation
ह रः वकृ्षेऽिस्मन ् िस्थ वा खादित The monkey is standing on this tree and eating
ह रः वकृ्षेऽिस्मन ् िस्थ वा प ित The monkey stands in this tree and watches
ह रः वकृ्षेऽिस्मन ् उप व खादित The monkey is sitting in this tree and eating
ह रः वकृ्षेऽिस्मन ् उप व प ित Hari is sitting in this tree and watching
ह रः वकृ्षेऽिस्मन ् िस्थ वा प ित The monkey stands in this tree and watches
ह रः वकृ्षेऽिस्मन ् ग वा खादित The monkey goes to this tree and eats
ह रः वकृ्षेऽिस्मन ् ग वा प ित The monkey goes to this tree and looks

Table 4: Sanskrit Sentences and English Translations

It was interesting to observe how making seemingly random changes to words could bring out
sense modifications. Nonetheless, despite our efforts, we could not discern a logical pattern or
inference point to explain why these alterations were occurring.

6 Conclusion and Future Work
The objective of this study was to underscore the significance of context, in the form of exten-
sive data, in improving the performance of language models for translating word meanings in
Sanskrit. To achieve this goal, we assessed Google Translate’s output of BhG from Sanskrit to
English and developed a taxonomy of errors. Notably, our taxonomy revealed that the most
frequent errors arose from polysemous words, highlighting the critical role of WSD in NLP tasks
like machine translation.

However, we also observed a significant limitation: the state-of-the-art PLMs lack access to
substantial Sanskrit-language data, unlike many European languages and a few other Indian
languages. To address this, we illustrated how more context could potentially reduce errors
stemming from polysemous words.

In addition to polysemy, we identified three other error categories: compounding, knowledge-
sensitive words, and incorrect meaning attribution. While increased contextual learning might

22

mitigate these errors to some extent, they remain complex due to the inherent challenge of
instilling machines with world knowledge.

Our study further delved into the functioning of Google Translate through experiments. How-
ever, we were unable to derive logical inferences regarding why and how the mere presence or
absence of certain factors influenced the machine’s translations of word meanings.

In conclusion, this study provides a broad exploration based on our observations and exper-
iments with Google Translate. With the disclosure of the data used to train language models,
future research can yield more specific linguistic-based solutions to enhance performance in
Sanskrit translation tasks.

Acknowledgement

I would like to thank Prof. Amba Kulkarni for the Sanskrit verses of the Bhagavadgītā (BhG)
utilized in this study and Mr. Sriram Krishnan for his valuable input and guidance.

References

Agirre, Eneko and Philip Edmonds (2007). Word sense disambiguation: Algorithms and appli-
cations. Vol. 33. Springer Science & Business Media.

Bapna, Ankur et al. (2022). “Building machine translation systems for the next thousand lan-
guages”. In: arXiv preprint arXiv:2205.03983.

Chandra, Rohitash and Venkatesh Kulkarni (2022). “Semantic and sentiment analysis of selected
Bhagavad Gita translations using BERT-based language framework”. In: IEEE Access.

Easwaran, Eknath (2009). The Bhagavad Gita. Jaico Publishing House.
Gandhi, Mahatma (2014). The Bhagavad Gita. Jaico Publishing House.
Goyandka, Hari Krishnadas (2015). Srimad Bhagavad Gita with Shankara Bhashya. Gita Press

Gorakhpur.
Goyandka, Jayadayal (2011). Śrīmadbhagavadgītā Tattvavivecanī (English Commentary). Gita

Press, Gorakhpur, India.
Hyman, Malcolm D (2007). “From pāṇinian sandhi to finite state calculus”. In: International

Sanskrit Computational Linguistics Symposium. Springer, pp. 253–265.
Itankar, Prashant Y and Nikhat Raza (2020). “Ambiguity Resolution: An Analytical Study”. In.
Krishna, Amrith et al. (2016). “Compound type identification in sanskrit: what roles do the

corpus and grammar play?” In: Proceedings of the 6th Workshop on South and Southeast
Asian Natural Language Processing (WSSANLP2016), pp. 1–10.

Monier-Williams (1899). A Sanskrit-English Dictionary: Etymologically and Philologically Ar-
ranged with Special Reference to Cognate Indo-European Languages. Motilal Banarsidass.

Mukundananda, Swami (2022). BHAGAVAD GITA: THE SONG OF GOD. Rupa & Company.
Navigli, Roberto (2009). “Word sense disambiguation: A survey”. In: ACM computing surveys

(CSUR) 41, pp. 1–69.
Omar, Abdulfattah and Yasser Gomaa (2020). “The machine translation of literature: Implica-

tions for translation pedagogy”. In: International Journal of Emerging Technologies in Learn-
ing (iJET) 15, pp. 228–235.

Popović, Maja (2020). “Informative manual evaluation of machine translation output”. In.
Saraswati, Swamy Dayananda (2007). Śrīmad Bhagavad Gītā. Arsha Vidya Research and Pub-

lication Trust.
Sastry, Alladi Mallesh (2004). The Bhagavad Gita. Samata Books.
Shukla, Akshat et al. (2023). “An evaluation of Google Translate for Sanskrit to English trans-

lation via sentiment and semantic analysis”. In: arXiv preprint arXiv:2303.07201.
Zhao, Wayne Xin et al. (2023). “A survey of large language models”. In: arXiv preprint

arXiv:2303.18223.

23

Appendix
The appendix is structured as follows: In Sec. A we present details about the dictionary

entry12 for words.

A Dictionary
1. plava (H1) [Printed book page 715,1] plava a plavaka &c. See col. 2. [ID=141442]

(H2) [Printed book page 715,2] plava b mf(ā)n. swimming, floating, ŚāṅkhGṛ. ; Suśr.
[ID=141469] sloping towards, inclined, Hariv. ; Var. ; Hcat. (in astrol. applied to a con-
stellation situated in the quarter ruled by its planetary regent, Var. , Sch.) [ID=141470]
transient, MuṇḍUp. [ID=141471] plava mn. (ifc. f(ā).) a float, raft, boat, small ship, RV.
&c. &c. [ID=141472] plava m. a kind of aquatic bird (= gātra-samplava, kāraṇḍava, jala-
vāyasa, jala-kāka or jala-kukkuṭa, L.), VS. &c. &c. [ID=141473] a frog, L. [ID=141474]
a monkey, L. [ID=141475] & sheep, L. an arm, L. [ID=141476] a Caṇḍāla, L. [ID=141477]
an enemy, L. [ID=141478] Ficus Infectoria, L. [ID=141479] a snare or basket of wicker-
work for catching fish, L. [ID=141480] the 35th (or 9th) year in a cycle of Jupiter, VarBṛS.
[ID=141481] plava m. swimming, bathing (ifc. f(ā).), MBh. ; R. ; Kathās. [ID=141482]
plava m. flooding, a flood, the swelling of a river, MBh. ; MārkP. [ID=141483] the pro-
lated utterance of a vowel (= pluti), L. [ID=141484] protraction of a sentence through 3 or
more Ślokas (= kulaka), L. [ID=141485] sloping down or towards, proclivity, inclination,
L. [ID=141486] (in astrol.) = plava-tva, VarBṛS. , Sch. [ID=141487] a kind of metre, Col.
[ID=141488] N. of a Sāman (also with vasiṣṭhasya), ĀrṣBr. [ID=141489] jumping, leap-
ing, plunging, going by leaps or plunges, R. (cf. comp. below) [ID=141490] returning, L.
[ID=141491] urging on L. [ID=141492] plava n. Cyperus Rotundus or a species of fragrant
grass, Suśr. [ID=141493]

2. dharma (H2) [Printed book page 510,3] 1. dharma m. (rarely n. g. ardharcādi; the older
form of the RV. is dharman, q.v.) that which is established or firm, steadfast decree, statute,
ordinance, law [ID=99903] usage, practice, customary observance or prescribed conduct,
duty [ID=99904] right, justice (often as a synonym of punishment) [ID=99905] virtue,
morality, religion, religious merit, good works (dharmeṇa ind. or °māt ind. according to
right or rule, rightly, justly, according to the nature of anything; cf. below; °mesthita mfn.
holding to the law, doing one’s duty), AV. &c. &c. [ID=99906] Law or Justice personified (as
Indra, ŚBr. &c.; as Yama, MBh. ; as born from the right breast of Yama and father of Śama,
Kāma and Harṣa, ib. ; as Viṣṇu, Hariv. ; as Prajā-pati and son-in-law of Dakṣa, Hariv. ;
Mn. &c.; as one of the attendants of the Sun, L. ; as a Bull, Mn. viii, 16 ; as a Dove, Kathās.
vii, 89 , &c.) [ID=99907] the law or doctrine of Buddhism (as distinguished from the saṅgha
or monastic order, MWB. 70) [ID=99908] the ethical precepts of Buddhism (or the principal
dharma called sūtra, as distinguished from the abhi-dharma or ‘further dharma’ and from
the vinaya or ‘discipline’, these three constituting the canon of Southern B°, MWB. 61)
[ID=99909] the law of Northern B° (in 9 canonical scriptures, viz. Prajñā-pāramitā, Gaṇḍa-
vyūha, Daśa-bhūmīśvara, Samādhirāja, Laṅkāvatāra, Saddharma-puṇḍarīka, Tathā-gata-
guhyaka, Lalita-vistara, Suvarṇa-prabhāsa,ib. 69) [ID=99910] nature, character, peculiar
condition or essential quality, property, mark, peculiarity (= sva-bhāva, L. ; cf. daśa-
dh°arma-gata, ŚBr. &c. &c.; upamānopameyayor dh°, the tertium comparationis, Pāṇ.
ii, 1, 55, Sch.) [ID=99911] a partic. ceremony, MBh. xiv, 2623 [ID=99912] sacrifice, L.
[ID=99913] the ninth mansion, Var. [ID=99914] an Upaniṣad, L. [ID=99915] associating
with the virtuous, L. [ID=99916] religious abstraction, devotion, L. [ID=99917] = upamā,
L. (cf. above) [ID=99918] a bow, Dharmaś. [ID=99919] [Printed book page 1329,2] a
thing, Sukh. i [ID=99919.1] [Printed book page 510,3] a Soma-drinker, L. [ID=99920] N.
of the 15th Arhat of the present Ava-sarpiṇī, L. [ID=99921] of a son of Anu and father

12https://www.sanskrit-lexicon.uni-koeln.de/scans/MWScan/2020/web/webtc/indexcaller.php

24

of Ghṛta, Hariv. [ID=99922] of a s° of Gāndhāra and f° of Dhṛta, Pur. [ID=99923] of
a s° of Haihaya and f° of Netra, BhP. [ID=99924] of a s° of Pṛthu-śravas and of Uśanas,
ib. [ID=99925] of a s° of Su-vrata, VP. (cf. dharma-sūtra) [ID=99926] of a s° of Dīrgha-
tapas, VāyuP. [ID=99927] of a king of Kaśmīra, Rāj. iv, 678 [ID=99928] of another man,
ib. vii, 85 [ID=99929] of a lexicographer &c. (also -paṇḍita, -bhaṭṭa and -śāstrin), Cat.
[ID=99930] dharma [cf. Lat. firmus, Lith. dermė́.] [ID=99930.05] (H2C) [Printed book
page 510,3] dharmeṇa ind., according to right or rule, rightly, justly, according to the nature
of anything [ID=99930.1] dharmāt ind., according to right or rule, rightly, justly, according
to the nature of anything [ID=99930.2] (H2) [Printed book page 512,3] 2. dharma Nom. P.
°mati, to become, law, Vop. [ID=100471] 3. dharma in comp. for °man, q.v. [ID=100472]
(H1) [Printed book page 513,1] dharma a See p. 510, col. 3. [ID=100518]

3. kavi (H1) [Printed book page 264,2] kavi mfn. (√1. kū cf. 2. kava, ākūta, ākūti, kāvya,
Naigh. iii, 15 ; Nir. xii, 13 ; Uṇ. iv, 138) gifted with insight, intelligent, knowing,
enlightened, wise, sensible, prudent, skilful, cunning [ID=46509] kavi (is), m. a thinker,
intelligent man, man of understanding, leader [ID=46510] a wise man, sage, seer, prophet
[ID=46511] a singer, bard, poet (but in this sense without any technical application in the
Veda), RV. ; VS. ; TS. ; AV. ; ŚBr. i, 4, 2, 8 ; KaṭhUp. iii, 14 ; MBh. ; Bhag. ; BhāgP. ; Mn.
vii, 49 ; R. ; Ragh. [ID=46512] N. of several gods, (esp.) of Agni, RV. ii, 23, 1; x, 5, 3; iii,
5, 1; i, 31, 2; 76, 5 [ID=46513] of Varuṇa, Indra, the Aśvins, Maruts, Ādityas [ID=46514] of
the Soma [ID=46515] of the Soma priest and other sacrificers [ID=46516] (probably) N. of a
particular poet [ID=46517] cf. aṅgiras (Mn. ii, 151) and uśanas (Bhag. x, 37) [ID=46518]
of the ancient sages or patriarchs (as spirits now surrounding the sun) [ID=46519] of the
Ṛbhus (as skilful in contrivance) [ID=46520] of Pūṣan (as leader or guider) [ID=46521] N.
of a son of Brahmā, MBh. xiii, 4123, 4142-4150 [ID=46522] of Brahmā, W. [ID=46523] of
a son of Bhṛgu and father of Śukra, MBh. i, 2606 (cf. 3204; BhāgP. iv, 1, 45 and Kull. on
Mn. iii, 198) [ID=46524] that of Śukra (regent of the planet Venus and preceptor of the
demons), Rājat. iv, 495 [ID=46525] of the planet Venus, NBD. [ID=46526] of the sons of
several Manus, Hariv. ; BhāgP. ; VP. [ID=46527] of a son of Kauśika and pupil of Garga,
Hariv. [ID=46528] of a son of Ṛṣabha, BhāgP. [ID=46529] of Vālmīki, L. [ID=46530] a
keeper or herd, RV. vii, 18, 8 [ID=46531] (fig.) N. of the gates of the sacrificial enclosure,
TS. v, 11, 1, 2 (cf. kavaṣ) [ID=46532] the sun, W. [ID=46533] of various men [ID=46534]
the soul in the Sāṃkhya philosophy Comm. [ID=46535] a cunning fighter, L. [ID=46536]
an owl, L. [ID=46537] kavi (is or ī, W.), f. the bit of a bridle, L. [ID=46538] the reins (cf.
kavikā), W. [ID=46539] a ladle (cf. kambi), L. [ID=46540]

4. daiva (H1) [Printed book page 497,2] 1. daiva or daiva mf(ī)n. (fr. deva) belonging to
or coming from the gods, divine, celestial, AV. ; Br. ; Mn. ; MBh. &c. [ID=96788]
sacred to the gods (-tīrtha n. the tips of the fingers, Mn. ii, 59 ; cf. s.v.; °vīdik f. the
north, L. ; cf. 2. diś) [ID=96788.05] royal (vāc), Rājat. v, 205 [ID=96788.1] depending on
fate, fatal, Kāv. [ID=96788.15] daiva m. (with or without vivāha) a form of marriage, the
gift of a daughter at a sacrifice to the officiating priest, Mn. iii, 21 ; 28 [ID=96788.2] the
knowledge of portents, Śaṃk. [ID=96788.25] patr. of Atharvan, ŚBr. [ID=96788.3] pl. the
attendants of a deity, TāṇḍBr. xvii, 1, 1 [ID=96788.35] (H1B) [Printed book page 497,2]
daivī (ī), f. a woman married according to the Daiva rite, Viṣṇ. xxiv, 30 [ID=96788.4]
a division of medicine, the medical use of charms, prayers &c., W. [ID=96788.45] (H1B)
[Printed book page 497,2] daiva n. a deity (cf. kula-), BhP. iii, 1, 35 &c. [ID=96788.5]
(scil. karman, kārya &c.) a religious offering or rite, Yājñ. ; MBh. [ID=96788.55] daiva
n. divine power or will, destiny, fate, chance (°vāt ind. by chance, accidentally), AV. ; Mn.
; MBh. &c. [ID=96788.6] (H1C) [Printed book page 497,2] daivāt (°vāt), ind., by chance,
accidentally [ID=96788.7] (H2) [Printed book page 497,3] 2. daiva Vṛddhi form of deva in
comp. [ID=96855]

25

5. ayana (H2) [Printed book page 84,2] ayana a mfn. going, VS. xxii, 7 ; Nir. [ID=14674]
ayana n. walking, a road, a path, RV. iii, 33, 7 &c. (often ifc. cf. naimiṣāyana, pu-
ruṣāyaṇa, praśamāyana, samudrāyaṇa, svedāyana), (in astron.) advancing, precession,
Sūryas. [ID=14675] (with gen. [e.g. angirasām, ādityānām, gavām, &c.] or ifc.) ‘course,
circulation’, N. of various periodical sacrificial rites, AV. ; ŚBr. &c. the sun’s road north
and south of the equator, the half year, Mn. &c., the equinoctial and solstitial points, Var-
BṛS. &c. [ID=14676] way, progress, manner, ŚBr. [ID=14677] place of refuge, Mn. i, 10
[ID=14678] a treatise (śāstra cf. jyotiṣām-ayana), L. [ID=14679] (H1) [Printed book page
84,3] ayana b See √ay, col. 2. [ID=14744.1]

6. paritrāṇa (H3) [Printed book page 595,3] pari-trāṇa n. rescue, preservation, deliver-
ance from (abl.), protection or means of protection, refuge, retreat, Mn. ; MBh. &c.
[ID=117701] self-defence, L. [ID=117702] the hair of the body, L. [ID=117703] moustaches,
Gal. [ID=117704]

7. prapad (H1) [Printed book page 682,1] 1. pra-√2. pad Ā. -padyate (ep. also P.), to fall or
drop down from (abl.), throw one’s self down (at a person’s feet), MBh. ; to go forwards
set out for, resort to, arrive at, attain, enter (with acc., rarely loc.), AV. &c. &c.; to fly to
for succour, take refuge with (acc.), TS. &c. &c.; to fall upon, attack, assail, RV. ; AV. ;
to come to a partic. state or condition, incur, undergo (acc.), MBh. ; Kāv. &c.; (with an
adv. in sāt), to become, e.g. sarpasāt pra-√pad, to bec° a serpent, Bhaṭṭ. ; to obtain, gain
(patini, ‘as husband’), partake of, share in (acc.), ib. ; to adopt or embrace (a doctrine),
Rājat. ; to undertake, commence, begin, do, MBh. ; Kāv. ; to form (a judgement), MBh.
; to assume (a form), Kathās. ; to enjoy (pleasure), R. ; to take to (dat.), Hariv. ; to
come on, approach, appear, AV. ; R. ; Hariv. ; to take effect, succeed, MBh. ; to turn out
(anyathā, ‘differently’ i.e. without any effect or consequence), Hariv. ; to admit (a claim),
R. : Caus. -pādayati, °te, to cause to enter, introduce into (acc. or loc.), Br. : Desid. P.
pitsati, to wish to enter, ŚBr. ; Ā. -pitsate (cf. Pāṇ. vii, 4, 54), to be going to incur or
undertake, Daś. [ID=135115] (H2) [Printed book page 682,1] 2. pra-pad f. away, AitBr.
[ID=135118] N. of partic. sacred texts, Br. ; GṛŚrS. [ID=135119] (H1) [Printed book page
682,2] 3. pra-pad f. (fr. 3. pad) the fore part of the foot, AV. [ID=135140]

26

Linguistically Mapping Aśoka:
A Dialectometric Approach to the Major Rock and Major

Pillar Edicts

Patrick Zeitlhuber
University of Vienna

patrick.zeitlhuber@gmail.com

Abstract

The edicts of the emperor Aśoka were inscribed in different Middle Indo-Aryan language
varieties as well as Greek and Aramaic in the 3rd century BCE. These Middle Indo-Aryan
varieties have been variously categorized into three or four dialect groups. In this paper,
these classifications are reassessed by applying methods of dialectometry. Dialectometry
is a branch of quantitative linguistics which aims at measuring the differences between
languages and language varieties. I will examine Aśoka’s Major Rock and Major Pillar
Edicts by calculating the Levenshtein distance and aggregating the results. This is
followed by hierarchical clustering and multidimensional scaling in order to determine
the most suitable grouping of these language varieties. After triangulating the results,
the dialect classification will be projected onto a geographical map, therefore showing
the clear regional distribution of these dialect groups.

Keywords: Aśoka, dialectometry, quantitative linguistics, Middle Indo-Aryan,
inscriptions

1 Introduction

The edicts of the emperor Aśoka constitute the earliest extant evidence of written culture in
South Asia. They were issued in the years after Aśoka’s coronation, which is commonly dated
to 268 BCE. Strikingly, these edicts were not inscribed in Sanskrit, but in different language
varieties of Middle Indo-Aryan (MIA) as well as Greek and Aramaic and served diverse purposes
and functions.

Figure 1 shows a map of the 42 edict sites,1 which extend over the territory of the four modern
states of Pakistan, India, Nepal, and Afghanistan.2 Of these, the inscriptions in Afghanistan as
well as in Taxilā in Pakistan were written in either Greek, Aramaic or both. 174 edicts were
composed in various MIA language varieties. Commonly, these inscriptions are divided into
Major Rock Edicts, Minor Rock Edicts, Major Pillar Edicts, Minor Pillar Edicts, Cave Sites,
and various edicts (comprising the Pāṅgurāria Separate Pillar Edict and the Bhābrū Stone
Inscription).

The MIA varieties in the inscriptions show clear dialectal differences. That becomes even
more obvious as the edicts are often transfers of a certain text from one variety into another.
The original language is certainly an administrative language from the Eastern part of Aśoka’s
realm (2003, 165-166). Schneider (1978) even attempted to reconstruct the original archetype
of the Major Rock Edicts in this administrative language.

1A list of the abbreviations for all the Aśokan edict sites is provided in appendix A.
2The maps in this paper were created with QGIS, which is free and open-source. The coordinates for the Aśokan

sites were taken from Falk (2006; 2013) and verified and amended, if necessary, with Google Maps. For better
geographical referencing, river courses have been marked, which, however, represent the modern conditions.

27

At least to my knowledge, the MIA language of the Aśokan edicts has no commonly excepted
denomination apart from “Aśokan inscriptional language” and similar ones. In this paper, I opt
to call them—in accordance with the nomenclature of most other MIA languages—Āśokī.

Figure 1: map of the Aśokan edicts

The classifications of the Āśokī varieties in the literature are based on qualitative linguistic
analysis and vary between three and four dialect groups. Researchers picked certain linguistic
characteristics which they deemed representative and distinctive, on which grounds they grouped
these language varieties together. The following tables provide a sample of these different clas-
sifications.

Table 1 shows the dialect assessment by Salomon (1998, 73-76) and Oberlies (2003, 165). Both
describe three dialects with the same members. The Northwestern group is constituted by Śāh
and Mān, the Western by Gir and Sop, and the Eastern by Kāl, Dha, Jau, and Eṟṟ (and for
Oberlies also together with all the other Āśokan inscriptions).

28

Northwestern Western Eastern
Salomon
(1998) Śāh, Mān Gir, Sop Kāl, Dha, Jau, Eṟṟ

Oberlies
(2003) Śāh, Mān Gir, Sop

Kāl, Dha, Jau, Eṟṟ
“all other rock edicts,
pillar edicts” (p. 165)

Table 1: classifications into 3 dialects

Four dialects with slightly different members are postulated by Sen (1960, 7–11), Misra & Misra
(1982, 9-10), and Bubeník (1996, 8), which can be seen in table 2. The names of the dialects are
slightly different with each of these researchers. The terms in the first row before the comma
are used by Sen and Misra & Misra, after the comma by Bubeník. All of them agree that the
Northwestern (North-West) group is formed by Śāh and Mān and the Southwestern (West) by
Gir. They disagree, however, on the exact classification of the other inscriptions. Unfortunately,
Sop and Eṟṟ, which form a separate dialect for Bubeník, are not mentioned by Sen and Misra
& Misra. Bubeník groups those two together, whereas they are clearly separated by Salomon
and Oberlies. Otherwise, Sen and Misra & Misra separate Kāl, Dha, and Jau, which Bubeník
considers members of the same dialect.

Northwestern,
North-West

Southwestern,
West

Middle Eastern,
South/South-
West

Eastern,
Center/East

Sen (1960) Śāh, Mān Gir Kāl, Ṭop, Nāg3

Dha, Jau
“all the Minor
Rock Edicts and
Pillar Edicts, the
Cave Inscriptions”
(p. 11)4

Misra & Misra
(1982) Śāh, Mān Gir Kāl, Ṭop, Nāg5 Dha, Jau

Bubeník
(1996) Śāh, Mān Gir Sop, Eṟṟ Kāl, Dha, Jau

Table 2: classifications into 4 dialects

In this paper, I will apply quantitative methods to reassess these dialect classifications. To be
precise, I will draw upon the methods of dialectometry, which is a well-established methodol-
ogy, first and foremost in Romance and German(ic) variationist linguistics. Dialectometry was
devised in the 1970s and 80s out of a desire to reassess prevailing dialect classifications, which
were often based on small sets of subjectively chosen linguistic features, neglecting the major
part of the concerned varieties. Nerbonne (2009, 177) summarizes it by stating:

By focusing exclusively on single features or small combinations of these, variationists,
including dialectologists, sometimes fail to isolate signals of provenance clearly. The
signals are often so complex, even misleading, that they resist analysis using simple,
single-featured methodologies.

3Sen also mentions the Jogīmara Cave inscriptions here. Even though they are from the Mauryan period, they
are not Aśokan (Salomon, 1998, 76).

4Sen also mentions the Mahāsthān stone plaque inscription, the Sohgaurā copper-plate inscription, and the
Hāthīgumphā inscriptions of Khāravela here. The former two are from the Mauryan period, but they are not
Aśokan. The latter are from the Śuṅga period even (Salomon, 1998, 76, 142).

5Misra & Misra follow Sen in listing the Jogīmara Cave inscriptions here.

29

The aim of dialectometry is to make language measurable. This is achieved by quantifying
linguistic differences either between dialects and varieties of one language or between related
languages. By and large, two major schools of thought can be differentiated: the “Salzburg
school” established by Hans Goebl (2010) and the “Groningen school” centered around John
Nerbonne (2010). The main differences regard certain epistemological and methodological ap-
proaches. Both schools work predominantly with data from linguistic atlases.

The Salzburg school takes data and taxates it according to linguistic phenomena on the
levels of phonetics, morphology, syntax, and lexicon. The similarity between these taxates is
calculated with different algorithms (Goebl, 2010). The Groningen school uses predominantly
the Levenshtein distance either in its original version or with various modifications. A taxation is
not necessary but the data need to be arranged so only appropriate linguistic items are compared
(Nerbonne, 2010). Common to both schools is that the attained measurements are arranged in a
distance (or similarity) matrix which is the basis for further analyses. Hierarchical clustering has
proven to be a useful method for both. The results are then projected onto a geographical map.
Proponents of the Salzburg school create maps by using different clustering methods, Euclidian
proximity, skewness, arithmetic mean, standard deviation etc. (Scherrer and Stoeckle, 2016;
Goebl, 2010). Apart from clustering, the Groningen school applies multidimensional scaling and
bipartite spectral graph partitioning (Nerbonne, 2010; Heeringa, 2004; Wieling and Nerbonne,
2011).

Especially in German variationist linguistics, different dialectometric approaches have been
developed which are not based on distance matrices, e.g. factor analysis and principal component
analysis (Pickl and Pröll, 2019). Of course, the methods of dialectometry are not restricted to
horizontal variation, i.e. language variation in space. It is also possible to measure differences
and distances between vertical varieties like dialects, regiolects, and standard language (Kehrein,
2012). This is an all but exhaustive list of all the different approaches that have been applied
in dialectometry.

2 From the Data to the Map
2.1 Data Preparation
In order to determine the number of Āśokī dialects, I chose dialectometry as a viable methodol-
ogy. After the digitization of the relevant data, I arranged the texts of the Major Rock Edicts
(MaRE) and Major Pillar Edicts (MaPE) in a data frame as correspondence sets so each row
equals one location and each cell in a column contains all variants of a certain variable from
that location (see table 3 as an example). As the name of the variable has no influence on
the distance measurements, the Sanskrit equivalent of the MIA wordforms serve as a reference
point. Multiple variants are indicated by using | as delimiter.

The MaREs of Sopārā and Sannati had to be excluded as these are only extant in fragments.
For the remaining MaREs and the MaPEs, I selected all the wordforms that are attested in at
least 75 % of these edict sites. This is less based on statistical reasons than on practicality. This
approach led to 66 wordforms that were suitable for further comparison. The next step was the
philological and linguistic interpretation of these tokens.

Apart from Śāh and Mān, which were inscribed in Kharoṣṭhī, all the edicts were written
in Brāhmī. The Aśokan Brāhmī script indicates vowel length but not geminate consonants.
Moreover, anusvāra is often omitted. Judging from the inscriptions, the law of two morae (von
Hinüber, 2001, 117-118) had already had its effect on the Āśokī dialects. In contrast to Old
Indo-Aryan (OIA), in MIA no long vowel could precede a geminate or a consonant cluster. OIA
V̄CC resulted either in MIA V̄C or V̆CC.6 Both possibilities are attested in different lexemes at
different Aśokan sites. For the linguistic interpretation of the data, this means that whenever
a word in the Brāhmī edicts was written with a short vowel followed by a single consonant
sign and this particular form can be traced back to OIA V̄CC, it can safely be assumed that

6V̄ = long vowel, V̆ = short vowel, C = consonant

30

Skt bhavati rājā kariṣyanti
All - lājā kacchanti
Are hoti lāja|lājā kacchanti
Dha hoti lājā|lāja kacchanti
Eṟṟ hoti|hoti lāja|lājā kacchanti
Gir bhavati|hoti rājā kāsanti|kassanti
Jau hoti lājā kacchanti
Kāl hoti rājā|lājā kacchanti
Mān hoti|bhoti rājā kaṣṣanti
Mer hoti lājā|lāja -
Nan hoti lāja kacchanti
Rām hoti lāja kacchanti
Śāh bhoti|hoti rāyā|rājā kaṣṣanti
Ṭop hoti lājā|lājā kacchanti

Table 3: example correspondence set

that consonant has to be understood as a geminate. However, the opposite may also be the
case when a consonant cluster following an etymologically short vowel got simplified and the
vowel underwent compensatory lengthening, e.g. OIA varṣeṣu > vāsesu (Gir MaRE03), next
to vassesu (Kāl MaRe03). Especially the variety of Gir was very prone to this kind of sound
change.

Yet another difficulty presents itself with regard to the Kharoṣṭhī inscriptions of Śāh and Mān.
Just like Brāhmī, geminates were not indicated and anusvāra often omitted (or sometimes added
in unetymological positions). Apart from that, Aśokan Kharoṣṭhī does not designate the quality
of vowels. When it comes to sound clusters like OIA V̄CC or V̆CC, they appear in Kharoṣṭhī
as VC. It is, therefore, impossible to tell whether the vowel was shortened or the consonant
degeminated. In agreement with the phonetic interpretations in the “Dictionary of Gāndhārī”
on gandhari.org (Baums and Glass, 2002 ongoing), these cases were treated as retaining the
etymological vowel length.

Another peculiarity worth mentioning are the inscriptions from Kāl. In these, the signs for s,
ṣ, and ś are used without any clear distinction. Bubeník (1996, 9) claims, “The three sibiliants
of OIA survive [...] to a certain degree in the Center (Ka)”, i.e. Kāl. I tend to disagree with
this statement. Sometimes the sibilant signs appear in etymological positions but in most cases
there is no obvious reason. It is likely that the scribe considered these signs to be graphical
variants and used them indiscriminately or according to taste to represent one and the same
sibilant phoneme.

Further challenges for the linguistic interpretation concern scribal errors, orthographic pecu-
liarities, and inconsistent spellings. Moreover, it is imperative that only cognates are compared
with each other which will be elaborated on in the next section.

2.2 Distance Measurement
For the calculation of the linguistic distances between the language varieties of the Aśokan sites,
the package dialectR for the software R (Shim and Nerbonne, 2022) was utilized. The function
distance_matrix allows the creation of a distance matrix by applying the Levenshtein distance.

The Levenshtein distance (or: edit distance) measures the number of modifications that are
necessary to transform one string into another by either insertion, deletion, or substitution
(Kruskal, 1983, 215-219). It is the main method of measurement used by the Groningen school
of dialectometry. Nerbonne (2010, 481) states that “[e]arlier work in dialectometry analyzed
the data at a nominal level, where each pair of linguistic items was measured as the same or
different, while the application of Levenshtein distance allows numeric characterizations per

31

pair of pronunciations to be obtained.” Discussing the advantage of this kind of measurement,
Heeringa (2004, 24) argues that “[t]he Levenshtein distance is completely objective, and its
results are verifiable, an advantage it shares with other computational methods, in contrast to
dialect maps based on tribes and intuition”, if “the data used consists of representative samples
of the varieties.”

Another important aspect regarding distance measurements is the fact that only cognates in
different varieties should be compared. It would be possible to use the Levenshtein distance
to calculate the difference between two words that are etymologically unrelated. However,
this would yield methodologically and epistemologically incorrect results. Therefore, it is a
prerequisite that already the data preparation is carried out with sound philological and linguistic
knowledge.

In order to illustrate a measurement with the Levenshtein distance, the variable YATHĀ will
serve as an example in table 4:

Gir (MaRE12) y a th ā
Eṟṟ (MaRE12) a th a

1 1 = 2

Table 4: Levenshtein distance example

Two modifications are necessary to get from yathā to atha: the deletion of word-final y and
the substitution of ā by a. Hence, the absolute number of changes is 2. Yet, the parame-
ters for the function distance_matrix can be set to normalize the length of strings so the
penalty of the modification is calculated in relation to the total number of characters by setting
alignment_normalization = TRUE. In the example above, this means these 2 modifications are
divided by the sum of the string length of 4, which equals a relative difference of 0.5.7

Of course, these are still only two variants. For a useful distance measurement, a matrix
needs to be calculated that compares all the variants of a certain variety with all the variants in
every other variety for every variable. Herein lies the value of dialectometry as it is not based
on certain single features but it combines all the distance values of all the variables in all the
varieties. This step as called aggregation (Nerbonne, 2010).

All Are Dha Eṟṟ Gir Jau Kāl Mān Mer Nan Rām Śāh Ṭop
All 0,0 2,8 3,6 3,9 10,4 3,3 6,1 10,9 1,6 2,9 3,1 13,9 2,5
Are 2,8 0,0 5,3 5,7 13,6 4,4 8,2 12,7 2,7 0,6 0,6 16,4 4,0
Dha 3,6 5,3 0,0 4,8 11,9 2,6 6,2 11,2 3,6 5,1 5,2 14,9 3,8
Eṟṟ 3,9 5,7 4,8 0,0 12,9 4,2 5,9 12,0 4,7 5,6 5,5 15,5 4,8
Gir 10,4 13,6 11,9 12,9 0,0 10,9 14,4 13,2 12,3 13,6 13,8 12,3 13,0
Jau 3,3 4,4 2,6 4,2 10,9 0,0 5,2 10,0 3,6 4,3 4,6 13,4 4,1
Kāl 6,1 8,2 6,2 5,9 14,4 5,2 0,0 12,1 5,3 8,0 8,6 15,7 6,2
Mān 10,9 12,7 11,2 12,0 13,2 10,0 12,1 0,0 9,8 12,3 12,7 6,8 12,5
Mer 1,6 2,7 3,6 4,7 12,3 3,6 5,3 9,8 0,0 2,4 2,6 12,8 2,4
Nan 2,9 0,6 5,1 5,6 13,6 4,3 8,0 12,3 2,4 0,0 0,5 16,4 3,7
Rām 3,1 0,6 5,2 5,5 13,8 4,6 8,6 12,7 2,6 0,5 0,0 16,6 4,1
Śāh 13,9 16,4 14,9 15,5 12,3 13,4 15,7 6,8 12,8 16,4 16,6 0,0 16,5
Ṭop 2,5 4,0 3,8 4,8 13,0 4,1 6,2 12,5 2,4 3,7 4,1 16,5 0,0

Table 5: distance matrix of 13 MaREs and MaPEs
7The dental voiceless aspirate is represented by the digraph th in this illustration but in the calculation it is

considered one element to reflect its phonological status. As one of the anonymous reviewers pointed out, due to
the use of IAST aspirates like th are treated by the Levenshtein algorithm as two string elements not reflecting
the phonological status of aspirates. Even though the examples in this paper are presented in IAST, for the
calculation I have resorted represent aspirates with capital letters and non-aspirates with lowercase letters.

32

In this manner, the Levenshtein distance was calculated for the Āśokī data set containing 66 to-
kens from 13 locations with MaREs and MaPEs.8 As a result, a distance matrix is created by
calculating the Levenshtein distance between all the variants at a certain location with all the
variants at another location for every variable. Table 5 represents the resulting distance matrix
but for a more concise display the values were rounded to one decimal.

It is rather difficult to make sense of a plain distance matrix. Hence, further processing of the
distance measurements is necessary. Certain methods of illustration have proven useful, first
and foremost creating dendrograms on the basis of hierarchical clustering (section 2.3) as well as
multidimensional scaling (section 2.4). The results from both approaches can be used to create
maps (section 2.5).

2.3 Hierarchical Clustering
To project the linguistic distances onto a map, it is necessary to reduce the distance matrix to
a value matrix (Scherrer and Stoeckle, 2016, 101). One means to accomplish that is clustering,
whereby one of the most frequently used approaches is agglomerative hierarchical clustering.

Figure 2: hierarchical clustering with 3 (blue) and 4 (red) clusters

R provides the built-in function hclust for that. For this paper, the agglomeration methods
of UPGMA (= unweighted pair group method with arithmetic mean; called "average" in R)
and Ward’s minimum variance method (called "ward.D2" in R) were chosen in order to be able
to compare the validity of the results. Most frequently, the results obtained by hierarchical
clustering are plotted as a dendrogram.

From a linguistic point of view, a dendrogram allows for a grouping of dialects. The branches
show which varieties are linguistically closer to each other. The distances between the branches

8The parameters in R were set like this: distance_matrix(dataset, funname = "leven",
alignment_normalization = TRUE, delim = "|").

33

give valuable clues about the most suitable dialect categorization.
Figure 2 shows a dendrogram based on UPGMA to the left and Ward’s method to the right.

What can be clearly seen from both plots is that there are two major linguistic clusters. One
is constituted by Gir, Mān, and Śāh, the other by Kāl, Nan, Are, Rām, Ṭop, All, Mer, Eṟṟ,
Dha, and Jau. The blue lines indicate which locations are grouped together when the number
of clusters is set to be three. Even then, the ten locations on the left from Kāl to Mer form
one cluster, Gir alone a second, and Mān with Śāh a third. These clusterings hold true with
UPGMA as well as Ward’s.

Strikingly, the agglomeration into four clusters, illustrated by the red lines, yields different
results depending on the selected method. With UPGMA, it does not lead to a subdivision of
the location from Kāl to Mer. It rather assigns Gir, Mān, and Śāh to separate clusters each.

When selecting four clusters with Ward’s method, however, Gir constitutes one of its own,
while Mān and Śāh remain in one cluster together. Nan, Are, and Rām are grouped together
and separated from another cluster comprising Kāl, Ṭop, All, Mer, Eṟṟ, Dha, and Jau.

Consequently, the grouping of the language varieties of these locations into three clusters seems
valid as both agglomeration methods agree in this respect. The subdivision into four clusters
remains questionable, however. Shim & Nerbonne (2022, 23) state that hierarchical clustering
methods are rather unstable and need to be validated with other methods, e.g. multidimensional
scaling. In the following section, two different forms of multidimensional scaling will be applied.

2.4 Multidimensional Scaling
Nerbonne (2010, 487) describes multidimensional scaling (MDS) as “a statistical technique aimed
at representing very high dimensional data in a smaller number of dimensions.” This is accom-
plished by assigning the calculated distance values points in a coordinate system, usually either
in two or three dimensions. These coordinates yield a plot that can be read as a linguistic map
that depicts the linguistic distances each and every point has from the other (Embleton et al.,
2013, 14). To put it simply, MDS is one form of graphical representation of a distance matrix.

Figure 3: 2D and 3D multidimensional scaling

The left plot in Figure 3 shows a projection of MDS onto two-dimensional space. As with
hierarchical clustering, Kāl, Nan, Are, Rām, Eṟṟ, Dha, Jau, Ṭop, All, and Mer are very close to
each other. Gir as very far down. Even though Śāh and Mān are nearer to each other than to
any other variety, they show nevertheless some considerable linguistic differences.

The 3D illustration on the right side of Figure 3 depicts the same distances on the horizontal

34

axis but it gives more details about the distances between points that are very close to each
other. This is in accordance with the dendrogram in Figure 2, in which Kāl is the highest point
on this branch and Nan, Are, and Rām the lowest. The distances between the cluster to the
right still remain the same to Gir, Śāh and Mān.

Compared with the dendrogram in Figure 2, it can be claimed with certainty that Kāl, Nan,
Are, Rām, Eṟṟ, Dha, Jau, Ṭop, All, and Mer form a cluster and, therefore, constitute one dialect
group. Gir is set so far apart from any other language variety, hence, it must be assumed that
it forms a dialect of its own.

Not as straightforward is the classification of Śāh and Mān. The notion of these two as
individual dialect groups would be supported by hierarchical clustering with UPGMA, not by
Ward’s method though.

In both two- and three-dimensional scaling, Nan, Are, and Rām appear rather close to Kāl,
Ṭop, All, Mer, Eṟṟ, Dha, and Jau. Consequently, it does not seem advisable to divide these
varieties into separate clusters as suggested by Ward’s method in Figure 2.

2.5 Mapping Linguistic Distances

Figure 4: map with 3 clusters of Āśokī

Based on the results of hierarchical clustering and MDS, it is sensible to divide the language
varieties of the Major Rock and Major Pillar Edicts into three clusters. These dialect groups
can be projected onto a geographical map in order to illustrate the geographical dimensions.
For these purposes, the coordinates of the Aśokan sites and the clusters obtained by the above-
described methods were imported into GQIS, which allowed for the creation of this map of
linguistic clusters (Figure 4).

35

Seeing the three dialect clusters in geographical space, it becomes clear that there is an obvious
relation between geographical and linguistic distance. I will, consequently, follow Salomon and
Oberlies in referring to the dialects according to their geographical provenance. Northwestern
Āśokī (yellow squares) is constituted by Śāh and Mān although there is some variation between
these two varieties. Gir is clearly set apart and is the only representative of Western Āśokī
(orange hexagon). The varieties of Kāl, Nan, Are, Rām, Ṭop, All, Mer, Eṟṟ, Dha, and Jau form
Eastern Āśokī (red triangles), which is the best and most widely attested dialect.

Circling back to Figure 3, the coordinates assigned by MDS to the Aśokan sites based on
the distance matrix mirror the geographical distribution of the dialect groups as a whole on the
map, but the distribution of individual varieties is different. The distances of the Northwestern,
Western and Eastern dialect in the MDS plots more or less reflects their geographical distance.
Even though this is mere coincidence, it is a striking one indeed.

3 Discussion
With regard to Table 1, the dialect classification of Salomon (1998) and Oberlies (2003) can
be affirmed. The grouping in Table 2, however, does not seem to be valid compared with the
dataset for which the measurements in this paper were made. Even with the two different
options of four clusters in Figure 2, there is no reason for separating Kāl from Dha and Jau as
Sen (1960) and Misra & Misra (1982) suggested, nor Eṟṟ from Kāl, Dha and Jau as proposed
by Bubeník (1996). There may be arguments for this division with a focus on single linguistic
characteristics. Based on the dataset for this paper, there is no evidence for this differentiation
from the point of view of dialectometric aggregation. It is possible, however, that these results
might change with an expanded data set containing more wordforms and linguistic phenomena.

The wide prevalence of Eastern Āśokī creates an epistemological issue. As Salomon (1998,
75) pointed out:

But it must also be understood that they [i.e. the Aśokan inscriptions] do not provide
anything like a real dialect map of the time. For the geographical distribution of
the dialects—especially of the eastern dialect—can hardly correspond with linguistic
reality; the eastern dialect was obviously not the mother tongue of residents of the far
north and the central south, though it was used for inscriptions (Kālsī, Eṟṟaguḍi, etc.)
in those regions.

Hence, I want to emphasize that the aim of this paper is not to present a dialect map of the 3rd

century BCE. Figure 4 is supposed to be a map of a linguistic clustering of the language varieties
used in the Aśokan inscriptions regardless of whether or not they are an authentic reproduction
of speech habits of speakers of that time.

Still, this study has some limitations. The data set with 66 tokens is rather small. Due to the
fact that the Levenshtein distance is applied to whole strings, it was necessary to include only
those wordforms that are attested on all or most of the sites. To base the analyses on a broader
linguistic foundation, it will be necessary to utilize some other kind of comparison—perhaps
plain word stems (which comes with its own challenges).

Another option would be to chose an approach like Goebl (2010) and taxate the data according
to linguistic phenomena. Methods not relying on distance matrices like the ones Pickl & Pröll
(2019) use might be a viable endeavour. In the future, other methods of mapping will be explored
like multidimensional scaling maps (Nerbonne, 2010). Furthermore, it is my desideratum to
expand the dialectometric approach to include all the MIA Aśokan edict sites.

36

Acknowledgements
I want to thank Dr. Philipp Stöckle for providing his expertise and patiently answering all my
methodological and technical questions. I am also grateful to Prof. Alexandra N. Lenz and the
Austrian Academy of Sciences for giving me the time to work on this paper. And a big thank
you goes to Assoc. Prof. Hannes A. Fellner for his on-going support.

References
Stefan Baums and Andrew Glass. 2002-ongoing. A dictionary of Gāndhārī (online).

https://gandhari.org/dictionary.

Vít Bubeník. 1996. The structure and development of Middle Indo-Aryan dialects. Motilal Banarsidass,
Delhi.

Sheila Embleton, Dorin Uritescu, and Eric S. Wheeler. 2013. Defining dialect regions with interpretations:
Advancing the multidimensional scaling approach. Literary and Linguistic Computing, 28(1):13–22.

Harry Falk. 2006. Aśokan sites and artefacts. A source-book with bibliography. Number 18 in Monogra-
phien zur indischen Archäologie, Kunst und Philologie. Philipp von Zabern, Mainz am Rhein.

Harry Falk. 2013. Remarks on the Minor Rock Edict of Aśoka at Ratanpurwa. Jñāna-Pravāha Research
Journal, 16:29–48.

Hans Goebl. 2010. Dialectometry and quantitative mapping. In Alfred Lameli, Roland Kehrein, and
Stefan Rabanus, editors, Language and Space. An International Handbook of Linguistic Variation. Vol-
ume 2: Language Mapping, number 30.2 in Handbücher der Sprach- und Kommunikationswissenschaft,
pages 433–457, 2201–2212. De Gruyter Mouton, Berlin, New York.

Wilbert Jan Heeringa. 2004. Measuring dialect pronunciation differences using Levenshtein distance.
Ph.D. thesis, University of Groningen.

Roland Kehrein. 2012. Regionalsprachliche Spektren im Raum. Zur linguistischen Struktur der Vertikale.
Number 152 in Zeitschrift für Dialektologie und Linguistik. Beihefte. Franz Steiner Verlag, Stuttgart.

Joseph B. Kruskal. 1983. An overview of sequence comparison: time warps, string edits, and macro-
molecules. SIAM Review, 25(2):201–237.

Satya Swarup Misra and Haripriya Misra. 1982. A historical grammar of Ardhamāgadhī. Ashutosh
Prakashan Sansthan, Varanasi.

John Nerbonne. 2009. Data-driven dialectology. Language and Linguistics Compass, 3(1):175–198.

John Nerbonne. 2010. Mapping aggregate variation. In Alfred Lameli, Roland Kehrein, and Stefan
Rabanus, editors, Language and Space. An International Handbook of Linguistic Variation. Volume 2:
Language Mapping, number 30.2 in Handbücher der Sprach- und Kommunikationswissenschaft, pages
476–501. De Gruyter Mouton, Berlin, New York.

Thomas Oberlies. 2003. Aśokan Prakrit and Pāli. In Danesh Jain and George Cardona, editors, The
Indo-Aryan languages, Routledge Language Family Series, pages 161–203. Routledge, London et al.

Simon Pickl and Simon Pröll. 2019. Ergebnisse geostatistischer Analysen arealsprachlicher Variation im
Deutschen. In Joachim Herrgen and Jürgen Erich Schmidt, editors, Sprache und Raum. Ein interna-
tionales Handbuch der Sprachvariation. Volume 4: Deutsch, number 30.4 in Handbücher der Sprach-
und Kommunikationswissenschaft, pages 861–879. De Gruyter Mouton, Berlin, Boston.

Richard Salomon. 1998. Indian epigraphy: a guide to the study of inscriptions in Sanskrit, Prakrit and
the other Indo-Aryan languages. South Asia Research. Oxford University Press, New York et al.

Yves Scherrer and Philipp Stoeckle. 2016. A quantitative approach to Swiss German. Dialectometric
analyses and comparisons of linguistic levels. Dialectologia et Geolinguistica, 24(1):92–125.

Ulrich Schneider. 1978. Die großen Felsen-Edikte Aśokas. Kritische Ausgabe, Übersetzung und Analyse
der Texte. Number 11 in Freiburger Beiträge zur Indologie. Otto Harassowitz, Wiesbaden.

37

Sukumar Sen. 1960. A comparative grammar of Middle Indo-Aryan. Number 1 in Special Publications
of the Linguistic Society of India. Linguistic Society of India, Poona.

Ryan Soh-Eun Shim and John Nerbonne. 2022. dialectR: Doing dialectometry in R. In Proceedings of
the Ninth Workshop on NLP for Similar Languages, Varieties and Dialects, pages 20–27, Gyeongju,
Republic of Korea. Association for Computational Linguistics.

Oskar von Hinüber. 2001. Das ältere Mittelindisch im Überblick. 2., erweiterte Auflage. Number 20 in
Veröffentlichungen der Kommission für Sprachen und Kulturen Südasiens. Verlag der Österreichischen
Akademie der Wissenschaften, Wien.

Martijn Wieling and John Nerbonne. 2011. Bipartite spectral graph partitioning for clustering dialect
varieties and detecting their linguistic features. Computer Speech and Language, 25:700–715.

A Abbreviations of Aśokan Sites
Ahr Ahraurā All Allāhābād
Are Arerāj Bah Bahāpur
Bai Bairāṭ Bar Barābār
Bhā Bhābhrū Stone Inscription Bra Brahmagiri
Dha Dhaulī Eṟṟ Eṟṟaguḍi
Gav Gavīmaṭh Gir Girnār
Guj Gujarrā Jaṭ Jaṭiṅga-Rāmeśvara
Jau Jaugaḍa Kāl Kālsī
Kan Kandahār Laġ Laġman
Lum Lumbinī Mān Mānsehrā
Mas Maski Mer Merāṭh
Nāg Nāgārjuni Nan Nandangaṛh
Nig Niglīvā Niṭ Niṭṭūr
Pāḷ Pāḷkīguṇḍu Pāṅ Pāṅgurāriā
Rat Ratanpurvā Rāj Rājula-Maṇḍagiri
Rām Rāmpūrvā Rūp Rūpnāth
Sah Sahasrām Sāñ Sāñcī
San Sannati Sār Sārnāth
Śāh Śāhbāzgaṛhī Sid Siddapur
Sop Sopārā Tax Taxilā
Ṭop Ṭoprā Uḍe Uḍegoḷam

38

Hoisting the colors of Sanskrit

Gérard Huet
Inria Paris Center

Abstract

The Sanskrit Heritage Reader is a tool that transforms a Sanskrit text into a representa-
tion of all its possible segmentations as a word-by-word enunciation (padapāṭha), undoing
the sandhi euphonic rules. It allows a human annotator to select relevant segmentations
with the use of a man-machine graphical interface using a notion of colored segment. We
discuss in this paper this notion of color, and argue about its linguistic status, similar
to a notion of parts of speech, but also allowing to segment complex compounds into a
linear representation of so-called pre-compounds. This permits to present the padapāṭha
with segmented compounds, without having to decide prematurely of their exact internal
morphology. Colors can be seen as the coarsest classification of morphemes allowing the
regular representation of Sanskrit. The study reveals subtle difficulties in Sanskrit anal-
ysis not usually discussed in grammars, which deal extensively with generativity (vṛtti),
but rarely discuss text analysis (śābdabodha).

1 Introduction

The Sanskrit Heritage Reader1 is a segmenting service for Classical Sanskrit. It takes as input
a piece of Sanskrit text and proposes the various ways the text may be segmented into as a
sequence of word forms (pada) by undoing phonetic glueing (sandhi). Such a sequence is called
a word-by-word recitation (padapāṭha) of the piece of text (śabda). Actually, it does a bit more:
it breaks compounds into their constituents, profiting of the fact that the intra-compound sandhi
obeys the same rules as sentential sandhi. Thus the tool may be used for resolving compounds
into constituents as well as providing word decomposition of sentences, in view of further analysis
by various parsers to recognize its meaning.

This segmenter was designed as a finite-state relational process or Eilenberg machine (Huet,
2005). It assumes the prior generation of word forms and necessary phonemes from a given
vocabulary defined by a generative lexicon, in our case the Sanskrit Heritage dictionary. The
dictionary defines lexical items given with generation parameters, such as the present class
(gaṇa) of a verb, or the gender of a nominal. Thus the various data-banks used by the segmenter
store the corresponding signifier not just as a list of phonemes (varṇa) but as a tagged entity
exhibiting its generation parameters. Its tags are used for informing the user with the generation
parameters of the various pieces of the padapāṭha. Furthermore, the various kinds of segments
are displayed with a characteristic colour, making explicit its combinatorial power. Thus finite
verb forms such as gacchati are represented as red segments, nominal forms such as mudrā are
represented as blue segments, and nominal stems like hasta are represented as yellow segments,
usable as first component of compound form hastamudrā, itself represented as two consecutive
segments, yellow hasta followed by blue mudrā.

This color-coding turned out to be very effective to select the right segmentation of a text from
its possibly many potential segmentations. It is specially so when using the graphical interface

1https://sanskrit.inria.fr/DICO/reader.html

39

of the Reader (Goyal and Huet, 2016). The goal of this note is to give a systematic exposition
of this notion of color, and to investigate its proper linguistic status.

2 Basic colors
The main partition of Sanskrit padas is between nominals, constructed with the sup declension
suffixes, and verbal finite forms, constructed with the tiṅ conjugation suffixes, according to
Pāṇini’s sūtra (I,4,14): suptiṅantam padam. We use the color red for tiṅanta padas, this hot
color being appropriate for the dynamic action that they denote, while the cool blue color is
used for subanta nominal padas.

Thus on input vavarṣarudhiram we get the colored segments indicated in Figure 1.

Figure 1: vavarṣarudhiram

When clicking in the interface on red vavarṣa, one gets its morphological tag as: [vṛṣ]{pft.
ac. sg. 3 | pft. ac. sg. 1} and similarly on blue rudhiram, one gets [rudhira]{m. sg.
acc. | n. sg. acc. | n. sg. nom.}. This shows that this segmentation may be inter-
preted in 6 different ways according to their inflexion vibhakti, and consequently as possibly
various meanings. Here our colors are essentially marking part-of-speech of the words, no more.

Thus on sentence bhīmorudhirampibati we get the same blue color for the agent Bhīma and
for the object of its drinking, blood, as shown in Figure 2.

Figure 2: bhīmorudhirampibati

Actually, we set aside the vocative forms, colored green to make clear that they do not con-
tribute to the meaning of the text, but rather serve are indications pertaining to the enunciation
conditions. They belong to the discourse structure of the text, rather than to the sentence
structure proper. Also, grammatical content-less words such as conjunctions and other adver-
bials, which are indeclinable stand-alone items, are colored mauve, to distinguish them from blue
nominals, which denote participants (kārakas) having thematic role in the situation described
by the input sentence. Finally, (inflected) pronouns are colored a lighter shade of blue than
actual nominals.

Thus on input deva adyamamabhāryāpacati “Majesty, today my wife is cooking”, we get the
multicolor rendering shown in Figure 3.

Figure 3: deva adyamamabhāryāpacati

40

3 Nominal Compounding
In Sanskrit, compounding is productive, without limitation on the number of its components.
The standard compounding operation applies to two nominal forms, glueing by sandhi the stem
of the first to the second one. Thus, a yellow cloth, pītam ambaram, may be contracted in one
pada by compounding, yielding form pītāmbaram. We represent such a karmadhāraya compound
with two segments, one yellow for the left stem pīta, preceding the blue right form ambaram,
like in Figure 4 below.

Figure 4: pītāmbaram

The notation generalizes in a straightforward manner to dvandva compounds, with possibly
many yellow segments, like for aśvāvyuṣṭrāḥ (horses, sheep and camels), represented in Figure 5
below.

Figure 5: aśvāvyuṣṭrāḥ

But sometimes there may be an ambiguity, in case of an embedded compound such as
daśarathaputraḥ which could be analysed theoretically as (daśa-ratha)-putraḥ or daśa-(ratha-
putraḥ). This ambiguity is often avoided by not segmenting proper names, when they are
properly lexicalized, like here shown in Figure 6.

Figure 6: daśarathaputraḥ

Also, substantives obtained by compounding with a root form like nṛpa, king “who leads men”
should be lexicalized as a frozen form (rūḍha). This also applies to lexical items like malamūka
(deaf and dumb). This way most complex compounds may be understood un-ambiguously as
left-associating, like in Pañcatantra’s famous 10-components samāsa shown in Figure 7.

Now that we understand the representation of determinative (tatpuruṣa) compounds, let us
move to the possessive class (bahuvrīhi). Here we have a problem, because such exocentric
compounds, turning into adjectives, may transform their right hand component in order to
assign the compound some gender that is not allowed for the original right-hand side nominal.
That is, their gender is not a synthesized attribute, but it is inherited from the surrounding
noun phrase head. Thus we may get pītāmbaraḥ “who wears a yellow garment”, typically as an

41

Figure 7: pravaranṛpamukuṭamaṇimarīcimañjarīcayacarcitacaraṇayugalaḥ

epithet of Viṣṇu, where the masculine form ambaraḥ of its right component is not a valid form
of the neuter substantive ambaram. We solve this problem by generating extra forms for such
substantives, usable only in ifc (in fine composi) position. We assign the color cyan to such
components, yielding the representation shown in Figure 8.

Figure 8: pītāmbaraḥ

This same mechanism is used to enter forms of lexical entries which are restricted to the ifc
role, like -kāra, or root ifc forms. Thus for kumbhakāraḥ (pot-maker) we get Figure 9.

Figure 9: kumbhakāraḥ

An additional difficulty concerns feminine substantives like daṃṣṭrā. First, they must generate
an iic (in initio composi) ended in the feminine suffix -ā, in order to allow recognition of a
compound such as daṃṣṭrākarālaḥ “exhibiting horrific fangs”. But we must also license a segment
in the masculine stem -daṃṣṭra- to allow constructing a bahuvrīhi compound, itself usable as
left component of further compounds. We use the khaki color for this (rather rare) occurrence.
Here is an example, for bhagnanakhadaṃṣṭravyālam “wild beasts deprived of their claws and
fangs”, shown in Figure 10.

Figure 10: bhagnanakhadaṃṣṭravyālam

Please note that such khaki segments signal their use both as an ifc on their left, to build
a stem now used as iic to their right. Thus it is a stem that is not an iic, but rather the last
component of the prātipadika of a compound ended in an ifc component. Thus in kumbha-
kāra-putraḥ segment kumbha is yellow, but segment kāra is khaki, as right component of the
prātipadika of compound pada kumbhakārasya. It thus partly disambiguates the grouping of
stems used to build a complex compound.

Most regular compounds are left-associative, like the example in Figure 7. The successive
compositions of meanings allows understanding such long compounds in real time, without

42

taxing short-term memory. Many of the exceptions to this rule concern proper names, and
frozen technical terms which may not be compositional in meaning. Such items should be
lexicalised, and the compounds containing them will be linear, understandable by left to right
composing of the meanings of its individual segments, like in the above example of Figure 7.

At this point we note that, even if proper names are lexicalized, we must allow for the pos-
sibility of using a descriptive compound in the vocative. For instance, on input namaste’stu
mahāmāye śrīpīṭhe surapūjite (I honor Thou, Great Illusion, Enthroned by Fortune, Blessed by
the Gods), we get Figure 11.

Figure 11: namaste’stu mahāmāye śrīpīṭhe surapūjite

This concludes our discussion of regular nominal compounds. There exist also exceptions to
the two rules that are implicit in those: firstly, the first component does not carry the vibhakti
suffixes, and is reduced by luk to its stem form; secondly, retroflexion does not cross over the
compound frontier. When one of these two conditions is not met, the compound must be
lexicalized. For instance, consider agrevaṇam “border of the wood”, where the first component
is in the locative (aluk), and the second component vanam incurs retroflexion because of its left
context. Such compounds are in small number, mostly to form proper names like Janamejaya
or Rāmāyaṇa.

4 Adverbial compounds
An important, although diverse, family of compounds is referred to by the name avyayībhāva
“turned into an indeclinable”. A typical representative is yathāvṛddhi “according to the phase of
the moon”. Its left-hand side is the invariable yathā, and its right side is the neuter form vṛddhi.
Here this right component cannot be used stand-alone, since it is not a form of feminine nominal
vṛddhi. We chose to represent such a compound with 2 segments, a pink iic and a mauve ifc, as
shown in Figure 12.

Figure 12: yathāvṛddhi

The avyayībhāva compound family comprises many unusual constructions, and sometimes the
indeclinable is in its right hand part rather than its left part, like sūpaprati “with some sauce”.
Such exceptional items must be lexicalized.

Absolutives are colored mauve, in keeping with their adverbial nature, but a specific color
could have been specified. Absolutives in -tvā are provided for roots without preverbs, abso-
lutives in -ya attach to verbs provided by preverbs, which are represented glued to their root,
like finite verbal forms. They are thus all mono-segment. Occasionally they appear negated,
in which case we get two segments, the privative prefix being a stand-alone segment, like in
the following example, yato vāco nivartante aprāpya manasā saha “(brahman is) where speech
returns from, unable to grasp it with the mind”, shown in Figure 13.

Also in mauve are occasional absolutives in -am (the so-called ṇamul construction), and in-
finitive forms in -tum. At this point it should be mentioned that the various participial forms
are colored blue, in keeping with their nominal declension.

43

Figure 13: yato vāco nivartante aprāpya manasāsaha

Other generative adverbs are the so-called tasil, adverbs of manner like ubhayatas (from both
sides), colored mauve.

5 Verbal compounds

Finite forms of verbs are usually represented as a single segment. That is, potential preverbs
are glued to the root form, contrarily to the original design of our Reader, where preverbs were
represented as separate segments. Similarly, prefixes such as prepositions, but also particles such
as sa-, su-, dus-, ku-, etc are considered morphemes of the inner morphology of padas, and not
segments to be compounded. This also applies to the privative prefixes a-/an-. This induces
extra lexicalisation, but greatly simplifies the user interface. This is also the case for secondary
taddhita suffixes such as -tva, -tā, -vat, etc.

There is an exception for the so-called periphrastic perfect, obtained by glueing a special
morpheme in -ām to a form in the perfect of one of the auxiliary verbs as, bhū and kṛ. We
represent such forms as two segments, the form in -ām in orange, while the auxiliary perfect
form is a usual verbal form in red; Thus, for sentence āsāṃcakre hvayāmāsa ca (he sat and
called) we get Figure 14. By contrast, so-called periphrastic future forms are monosegmental,
treated as a specific conjugation.

Figure 14: āsāṃcakre hvayāmāsa ca

Another kind of verbal compound is the so-called cvi inchoative construction. It allows root
forms of the 3 auxiliaries to be prefixed with nominal stems in -ī (or sometimes -ū). Some
other initial segments like sākṣāt may also be used, the class of such segments is called gati. By
analogy with periphrastic perfect, we use the orange color to represent such initial segments.
Finally, the construction is extended to nominal compounds, formed with a gati followed by a
declined kṛdanta (first level nominal derivative) of the auxiliaries. Figure 15 shows a few typical
such forms.

Figure 15: Various inchoative compounds

It should be noted that these nominal inchoative compounds may themselves be subject to
compounding, like in vivādāspadībhūtam (that has become litigious) in Figure 16 below. Please
note that we have here one pada represented as three segments.

44

Figure 16: vivādāspadībhūtam

6 Special constructions

One last productive morphological construction is exemplified by the bahuvrīhi compound vak-
tukāmaḥ “desirous of speaking”. Its left component is an infinitival form deprived of its final -m,
and its right component is a form of kāma, manas or śakya. This construction is not very fre-
quent, but it is productive, used by the best authors, and stated in a vārttika to sūtra (VI,1,144).
It must therefore be accommodated, as a separate construct. We use again the orange color for
the infinitive segment vaktu, in analogy with the verbal compounds above, while we use the cyan
color for the ifc segment kāmaḥ. We show in Figure 17 the example punarapi vaktukāma ivāryo
lakṣyate “Your honor appears desirous of speaking again”.

Figure 17: punarapi vaktukāma ivāryo lakṣyate

It is not always obvious to decide whereas an unusual formation ought to be productive or
treated as a lexicalized exception. For instance, sūtra (II,1,72) alludes to irregular compounds in
the group (gaṇa) headed with mayūravyaṃsaka. This group is indeed a motley crew, with bizarre
isolated items like jahijoḍaḥ (in the habit of hitting one’s chin) which may be simply lexicalized.
Others mentioned in vārttikas allude to generic schemas like aśnītapibatā built on two imperative
forms compounded as a feminine substantive, meaning a festive occasion where the two actions
are repeatedly performed, like in this case eating and drinking. Indeed the gaṇapāṭha lists 12
such attested substantives, raising the question of whether this construction is productive. We
decided against accepting this scheme as generic, because this would oblige us to introduce two
specific colors, one for imperative iic segments, the other for imperative ifc segments construed as
feminine substantives, and we rather decided to lexicalize the 12 attested occurrences. One may
even question whether such forms, completely atypical in making nominal compounds out of
verbal forms, deserve the status of grammatically correct Sanskrit. Would such crude colloquial
expressions have been considered śiṣṭa by Pāṇini? Aren’t they just tongue-in-cheek suggestions
by Kātyāyana as implicit mockery of grammar’s pretension to straight-jacket a living language?

We end this section by mentioning one last color, grey, for input chunks that are not recognized
by the lexer. This may be because of an incompleteness of the generative lexicon, or this may be
due to an un-grammatical item in the input, like shown in Figure 18, for input na tathā bādhate
śītaṃ yathā bādhati bādhate “It’s not so much the cold as ‘bādhati’ that bothers me”, told by a
palanquin bearer to the bogus pandit he is carrying, who had asked: api śītaṃ bādhati?

45

Figure 18: na tathā bādhate śītaṃ yathā bādhati bādhate

7 Making linguistic sense of colors
We have given a fairly extensive treatment of the visualisations of various Sanskrit construc-
tions, as they are recognized by the Sanskrit Heritage segmenter, and as they are displayed in
the graphic interface of its Reader. In this visualisation, various segments are displayed in var-
ious colors giving some information about morphemes that are necessary to represent Sanskrit
padas. Most of the complexity of the treatment is due to the numerous ways of formation of
compounding, and specially the changes of gender and number suffixes that occur along com-
pound derivation. However, it is not straightforward to give a precise characterisation of our
color encodings in terms of linguistic concepts.

Let us first sum up the various color encodings in the following table:

color part of speech
blue inflected nominal
red finite verb form

yellow nominal stem as iic
green vocative
mauve indeclinable, particle

light blue pronoun
cyan ifc
khaki ifc stem
pink indeclinable iic

orange perfect iic, gati, infinitive stem
grey unrecognized

For one thing, the colors presented above are ambiguous. For instance, the orange color is
assigned to three kinds of morphemes: periphrastic perfect stems in -ām, gati verbal prefixes, and
infinitives deprived of their final -m. It is obvious that these three constructions are independent,
and that the common color is just merging these three constructions into a general category of
“verbal compounds”. We could indeed easily distinguish the three by visualising them differently,
and each shade of orange would then designate unambiguously a precise grammatical operation.

Then, the status of “segment” itself is not entirely obvious. Actually, each segment generally
represents a choice among several possible interpretations, explicit only if we click on the seg-
ment to uncover its possibly many tags. Consider for instance pītāmbaraḥ in Figure 9 above.
The cyan component ambaraḥ is tagged {m. sg. nom.}. This does not mean that ambaraḥ is
a valid masculine substantival form, which it is not, just that the particular segmentation pīta-
ambaraḥ may be interpreted as the masculine form of an adjective obtained by the bahuvrīhi
interpretation of the compound: “he who has a yellow garment”, in the nominative case. Thus
the tag is not a tag of the segment, but of the whole compound pada. Now consider pītāmbaram.
Here ambaram may have two colors. As a cyan segment, it would be tagged {m. sg. acc.},
meaning similarly that this particular segmentation pīta-ambaram may be interpreted as the
same masculine adjective, but now in the accusative case. Whereas if it appears as a blue seg-
ment, it bears the multitag {n. sg. acc. | n. sg. nom.}, meaning that here pīta-ambaram
could be interpreted either as the karmadhāraya compound obtained by contraction of pītam
ambaram “yellow cloth” (in the nominative or accusative case), or possibly the bahuvrīhi adjec-

46

tive, but now fit with the neuter gender, in order to serve as determinant to some neuter head
noun. This shows that in general, even if we restrict segments to single tags, a given compound
segmentation does not characterize its mode of formation.

We must explain the reason for this apparent confusion. It stems from the morphological gen-
eration process, that compiles the lexicon entries by feeding the various databanks corresponding
to our colors. On processing the entry ambara, which is marked as a neuter substantive, it gen-
erates ifc items (cyan) only for the missing genders, in order to be able to recognize masculine
and feminine instances of the bahuvrīhi adjective. Indeed, on entry pītāmbarā, our segmenter
generates only a cyan ifc ambarā, with tag {f. sg. nom.}. The rationale of not generating a
cyan ambara of gender neuter when analysing pītāmbaram was that it would just be redundant
with the karmadhāraya segmentation, from the point of view of possible tags. Thus it is left
to the next stage of interpretation after segmentation, i.e parsing, to make sense of sequences
of padas decorated with vibhakti parameters. And it is the parser that must guess, in case of
the neuter gender, whether the segment fits with the surrounding context, in order to build
the agreeing nominal phrases. Thus in the case of a neuter interpretation, it is the burden of
the parser to choose between the two interpretations of the compound pada as a substantive
(viśeṣya) or as an adjective (viśeṣaṇa). Whereas in the case of cyan segments, there is no such
choice, they must be adjectives. Unfortunately, the parser does not have the information, if we
transmit to it just morphological tags, but not the color that in the cyan case bears information.

This discussion shows that there is not a good transmission of information if the result of the
segmenter is just a list of morphological tagged pada. It suggests that we could do better, if the
viśeṣya/viśeṣaṇa status of compounds is transmitted when known. And this is where colors may
help. But in order to deal correctly with the neuter case, we must distribute it in the two colors.
Thus on pītam ambaram we could generate a blue ambaram bearing tags {n. sg. acc. | n.
sg. nom.}, as presently, but also a cyan ambaram bearing now tags {n. sg. acc. | n. sg.
nom. | m. sg. acc.}. So we would have more singly tagged segmentations, but now we can
transmit their substantive/adjective character with the color, that would have now a clearer
linguistic status. Thus we could generate more precise information by transmitting the color
along with the tagging, but at the price of overgeneration — more solutions would be allowed.

Unfortunately, there are many more compound constructions which are ambiguous with re-
gard to their viśeṣya/viśeṣaṇa status, specially when compounding is iterated, typically in poetic
style (kāvya). Thus when we recognize a series of embedded compounds X1X2...XnY we only
propose a list of n yellow stems (prātipādika) followed by a blue (or cyan) pada, and this ignores
not only the exponentially many ways in which the X sequence is the frontier of binary com-
pounds, but also the viśeṣya/viśeṣaṇa status of internal binary compounds, according to their
bahuvrīhi/tatpuruṣa actual construction. Not to speak of the fact that a consecutive sequence
of X’s and possibly Y might represent one dvanda multi-component compound.

Two remarks are in order. The notation of syntactic constituents used by Gillon to represent
phrase-structure in Sanskrit has a special mark “-B” to indicate bahuvrīhi raising (Gillon, 1995;
Gillon, 2009). Unfortunately, this mark has a null phonetic realization (“morphological zero”)
and this is one of the main causes of Sanskrit ambiguity. Sometimes, Navyanyāya terms, using
compounding for relational expressions, occasionally use suffixing by a taddhita pratyaya -ka
(technically called kaP) to make explicit bahuvrīhi raising. In this case, the ambiguity is lifted
by explicit phonetic marking — the extra ka syllable is the information that decides its viśeṣaṇa
status. Another device is the accent. Accent on the first component marks its bahuvrīhi char-
acter. Unfortunately, accent is not marked in Classical Sanskrit, so the parser must decide the
matter. And actually, in poetry, the ambiguity may be used to have two different interpretations
in the two branches of a double-entendre (śleṣa).

This discussion shows that it would be wrong to interpret the two colors blue and cyan as
part-of-speech markers, identifying respectively substantives and adjectives. They both pertain
to nominals, i.e. subantas, the viśeṣya/viśeṣaṇa status of which is not intrinsic, but depends

47

on the context. Furthermore, the distinction between nouns and adjectives in Sanskrit is not
completely clear. Actually, even an authority such as S. D. Joshi says: ‘it is very difficult to
provide a satisfactory definition of the concepts viśeṣaṇa and viśeṣya, because we don’t have
adequate criteria for the differentiation of adjectives and substantives”(Joshi, 1966). Additional
discussion on this question is provided in (Dash, 1987).

Actually, the design rationale of the segmenter is just to build the padapāṭha, and to transmit
to the next layer of interpretation the extra information it may have gathered on the way;
thus, the Heritage segmenter, being lexicon-directed, is aware of morphological tags, which are
parameters of their synthesised forms, generated from the lexicon, and thus transmits padas
with their vibhakti, but should not try to guess thematic roles (kāraka) or even recognize noun
phrases. It is up to the next stage of parsing to understand the situation semantics. Thus,
the Heritage shallow parser (Huet, 2007), just by grouping phrases in the first three cases
(nominative, accusative, instrumental), guesses the thematic roles of the situation, without
having to understand the structure of compounds. In comparison, Amba Kulkarni’s dependency
parser (Kulkarni, 2019) goes further in analysing sentences, and uses semantic principles such
as compatibility (yogyatā). This way, her parser is able to go as far as translation to Hindi.

8 Geometry of colors

Our colors actually indicate states of the segmenting automaton, which correspond to a mix-
ture of morphological categories and their mutual combinatorics. Each color corresponds to a
databank of morphemes. These morphemes are assembled by external sandhi in order to form
padas, according to the finite automaton graph shown in Figure 19 below.

Figure 19: Colors geometry of padas

Our design of the segmenter evolved over time. Initially, preverbs were recognized as indepen-
dent segments. But this feature was deemed confusing by users, with non-connected preverbs
floating around. Thus we decided to glue them on the fly, either to finite verb forms of the
roots, or to their participial forms (kṛdanta). At glueing time, we recognize that the particular
sequence of preverbs is consistent with the roots’ requirements. This allows us to dispense with
huge databanks storing the glued preverbs, and to satisfactorily deal with problematic sandhi
operations like in the recognition of ihehi, with a mechanism of phantom phonemes (Huet, 2006).
It is to be noted that assuming preverbs as prefixes of verbal forms may prevent recognition of
some Vedic sentences, where prepositions may float around more freely.

Thus preverbs still appear in the finite automaton state transition diagram, but are silently
glued to verbal forms when visualised by the Reader. This is important for instance for prop-

48

erly recognizing absolutive forms, ending in -tvā for roots, and in -ya for verbs prefixed with
preverbs (using kṛt suffixes respectively Ktvā and LyaP). This induced us to generate kṛdanta
forms, notably participial forms, in a separate databank from other nominals (see Part state in
Figure 19). Such forms are generated with compound tags indicating their internal morphology.
For instance, pragatam is tagged as [pra-gata { pp. }[pra-gam]]{n. sg. acc. | n. sg.
nom. | m. sg. acc.}. This information is useful for further stages of parsing, since they are
useful to determine their combinatorial power (ākāṅkṣā). However, we kept the blue colors for
such kṛdanta forms, in an effort to avoid confusion of the annotator. We could of course have
distinguished them with some different shade of blue, but the information is there anyway in
the tag when needed.

Another improvement was to treat privative prefixes a-/an- as part of internal morphology,
as opposed to independent iic. segments. This was crucial for helping annotators to notice
situations of ambiguity where a segment ending in -ā precedes a possibly negated notion, lead-
ing to two opposite analyses. On the other hand, this obliged us to lexicalize such privative
compounds, and this is problematic for long-scope negation, where the privative prefix operates
on a compound (Gillon, 1987). This treatment of negation is homogeneous with the treatment
of nominal prefixes like su-, dus-, sa-, vi-, etc. This relieves the segmenter from overgenerating
with such mono-syllabic particles if treated as genuine stems, but at the cost of having to lexical-
ize the corresponding compounds. Symmetrically, we treat taddhita suffixes similarly. Again,
this is problematic when these particles have a long scope, affixed to possibly long compounds.
This also prevents recognition of long compounds used in Navyanyāya relational terms, where
taddhita suffixes may cascade arbitrarily, often in un-Pāṇinian ways.

9 Psychology of colors

From the point of view of programming, our colors are implemented as a discrete set of atoms,
that does not have any structure. However, from the point of the human-machine interface,
our colors are mapped into RGB color representations, which are carefully chosen tints with
features like hotness/coldness along a scale of activity associated with the corresponding segment
of speech. Thus verbal forms, denoting actions, are bright red, while substantives are painted
of a deep sky blue cold color since they have a more static role as participants to a situation.
Pronouns are like budding nouns, of a ligher shade of blue. Exocentric [bahuvrīhi] compounds, of
cyan color, as adjectives show some eagerness to associate with a deeper blue substantive they
will qualify. Indeclinables are mauve, showing some intermediate status between nouns and
verbs. Finally vocatives are of a flashy acid green, urging the user to either discard them, or to
admit them when appropriate, but as discourse operators independent of the phrasal structure.
Compounds have their iic marked as yellow, orange, or pink, according to the nature of their
ifc, and with a slightly paler tint.

Thus these color codings have some rationale as psychological conceptual triggers, and this is
very important from the point of view of helping the user to select the appropriate segmentation
solution. Some care was taken also to have a consistent palette of colours, not too aggressive,
and combining smoothly in order to offer a satisfactory esthetic experience. It is to be remarked
that Amba Kulkarni’s Saṃsādhanī platform uses also colors in its interface, and these colors are
reminiscent of our own encodings, but with more shades of colors, because the parser process
needs to distinguish clearly the cases of nominals, in order to group them easily as noun phrases
by agreement of their respective colors. In our segmenter, we made the choice of having few
colors (10 in total) in order not to have the annotator lose time in a finer grain selection that is
not relevant at segmentation time.

10 Conclusion

We have given a complete description of a notion of color which characterizes sorts of Sanskrit
morphemes necessary to account for the notion of pada. All productive constructions of surface

49

Sanskrit morphology are covered. We may consider this notion of color as a notion of parts
of speech appropriate for Sanskrit. Segment colors are not independent, since the color transi-
tions are governed by the Sanskrit segmenting finite-state automaton when recognizing padas.
Thus, our colors indicate parts of speech categories, but now obeying algebraico/geometric laws
corresponding to their mutual interactions as morphemes in pada production, and obtained by
quotienting the state space of the segmenting automaton.

In this study, we have extended the initial dichotomy between subantas and tiṅantas in order to
accommodate the various notions of compound word. The notion of nominal stem (prātipādika)
came prominent, a sequential list of them being the key to collapse long compounds in the linear
frontier of their parse trees, gaining an exponential factor by avoiding premature settlement of
non-deterministic choices that are best solvable in the subsequent workflow of the global parser.
This puts in evidence the need to introduce a variety of morpheme categories and their mutual
connectivity requirements. It is satisfactory that most of these categories correspond to Pāṇinian
notions, such as cvi, gati, tasil. Even less expected notions, such as the (khaki) stems of ifc-only
items used as pseudo-iics, are known in the tradition as bhāṣitapuṁska. This conversion to the
masculine stem of iics is the basis for our generation of yellow iic segments, but we need it also
for conversion to masculine stem of inner compounds built on an item usable only in ifc, a subtle
consideration.

One construct stands out as exceptional, allowing mixture of tiṅanta material (the infinitive
tumun with lopa elision of final -m) with subanta padas (forms of kāma, manas and rarely
śakya). This construct is often passed over in Sanskrit grammars, or stated as belonging to the
late language (Whitney, 1924)§968g, (Apte, 1885)§181, (Renou, 1956) p72, but it is productive
in classical Sanskrit. Indeed it is not discussed in Pāṇini’s Aṣṭādhyāyī, and only appears in
Kātyāyana’s vārttikas to sūtra (VI,1,144); The same goes true for perfect periphrastic forms,
which are exceptional in Vedic, restricted to auxiliary kṛ in sūtra (II,1,40), and only described
fully in Patañjali’s Mahābhāṣya (Renou, 1956) p72. We can thus witness diachronic evolution
of the language by the necessary successive adjunctions of items to Figure 19. Refer also to the
discussion on aśnītapibatā above.

The notion of pre-compound, allowing the collapse of an arbitrary number of embedded com-
pounds, has put in evidence the necessity of providing segments which are stems of forms which
normally occur only as right-hand sides of compounds, exemplified by the khaki daṣṭra in Figure
10. This problem is not discussed in Western Sanskrit grammars, to our knowledge. Such rare
segments serve to partly disambiguate the compounds in which they appear, since they mark a
boundary between two different compounds.

We have also departed from the standard presentations by separating vocative forms, deemed
to belong to discourse analysis rather than sentential recognition. Such vocatives (as well as
interjective particles like bhoḥ) are colored as acid green, and stand out in the interface in order
for the annotator to decide between them and iic stems, since this is a frequent ambiguity,
notably for stems in -a. The rationale is that the choice of the vocative must be consistent with
the global context, known to the annotator from the particular text she/he is studying, or from
semiotics considerations.

In summary, we have proposed a regular description formalism for padapāṭha sequences based
on a notion of colored segment, deemed to be complete for Classical Sanskrit, and appropriate
for quick selective annotation of corpus by human users with minimum training.

References
Vāman Shivarām Apte. 1885. The Student’s Guide to Sanskrit Composition. A Treatise on Sanskrit

Syntax for Use of Schools and Colleges. Lokasamgraha Press, Poona, India.

G. Cardona. 1988. Pāṇini: his work and its traditions. Motilal Barnasidass.

50

Siniruddha Dash. 1987. Adjectives and substantives as separate categories in Sanskrit. Lokaprajñā,
1,1:90–96.

Pierre-Sylvain Filliozat. 1988. Grammaire sanskrite Pâninéenne. Picard, Paris.

Brendan S. Gillon. 1987. Two forms of negation in Sanskrit: prasajyapratisedha and paryudās-
apratiṣedha. Lokaprajñā, 1,1:81–89.

Brendan S. Gillon. 1995. Autonomy of word formation: evidence from Classical Sanskrit. Indian
Linguistics, 56 (1-4), pages 15–52.

Brendan S. Gillon. 2007. Exocentric (bahuvrīhi) compounds in classical Sanskrit. In Gérard Huet
and Amba Kulkarni, editors, Proceedings, First International Symposium on Sanskrit Computational
Linguistics, pages 1–12.

Brendan S. Gillon. 2009. Tagging classical Sanskrit compounds. In Amba Kulkarni and Gérard Huet,
editors, Sanskrit Computational Linguistics 3, pages 98–105. Springer-Verlag LNAI 5406.

Pawan Goyal and Gérard Huet. 2016. Design and analysis of a lean interface for Sanskrit corpus
annotation. Journal of Linguistic Modeling, 4(2):117–126.

Gérard Huet. 2005. A functional toolkit for morphological and phonological processing, application to a
Sanskrit tagger. J. Functional Programming, 15,4:573–614.

Gérard Huet, 2006. Themes and Tasks in Old and Middle Indo-Aryan Linguistics, Eds. Bertil Tikkanen
and Heinrich Hettrich, chapter Lexicon-directed Segmentation and Tagging of Sanskrit, pages 307–325.
Motilal Banarsidass, Delhi.

Gérard Huet. 2007. Shallow syntax analysis in Sanskrit guided by semantic nets constraints. In Pro-
ceedings of the 2006 International Workshop on Research Issues in Digital Libraries, New York, NY,
USA. ACM.

S. D. Joshi. 1966. Adjectives and substantives as a single class in the parts of speech. Publications of
the Centre of advanced study in Sanskrit, University of Poona, Class A, no 9.

Amba Kulkarni. 2019. Sanskrit parsing based on the theories of Śābdabodha. Indian Institute of Advanced
Study (DK Printworld distr.).

K V Ramakrishnamacharyulu Pavankumar Satuluri and Amba Kulkarni. 2016-17. Order of operations
in the formation of Sanskrit compounds with special reference to introduction of samāsānta element
and deletion of case endings. Journal of Oriental Institute, Vadodara, 66(4):77–86.

Louis Renou. 1942. Terminologie grammaticale du sanskrit. Honoré Champion, Paris.

Louis Renou. 1956. Histoire de la langue sanskrite. Editions IAC, Lyon.

Louis Renou. 1966. La Grammaire de Pāṇini. Ecole Française d’Extrême-Orient, Paris.

Pavankumar Satuluri and Amba Kulkarni. 2013. Generation of Sanskrit compounds. In Proceedings of
ICON 2013, the 10th International Conference on NLP, pages 77–86, Noida, India.

Rama Nath Sharma. 1987-2003. The Aṣṭādhyāyī of Pāṇini (6 vols). Munshiram Manoharlal Publishers.

William Dwight Whitney. 1924. Sanskrit Grammar. Leipzig. 5th edition.

51

Using TEI for digital Sanskrit editions containing commentaries
A study of Kālidas’s Raghuvaṁśa with Mallinātha’s Sañjīvani

Tanuja P. Ajotikar
Assistant Professor, The Sanskrit Library

Co-director Sanskrit Department India Programs,
Maharishi Vedic University, Vlodrop, The Netherlands

tanuja@sanskritlibrary.org

Ketaki Kaduskar
Research Assistant, The Sanskrit Library

ketaki.kaduskar@gmail.com

Peter M. Scharf
President, The Sanskrit Library

Adjunct Professor, IIIT Hyderabad
scharf@sanskritlibrary.org

Abstract

In the present project of making a TEI digital edition of Mallinātha’s commentary
Sañjīvanī on Kālidāsa’s Raghuvaṁśa, we encountered material that called for expansion
of the procedures for creating XML editions of Sanskrit texts containing commentaries
in accordance with the Text Encoding Initiative (TEI) guidelines. Ajotikar and Scharf
(2023) previously described standardized procedures for digitizing the Sanskrit texts
containing commentaries. To accommodate the additional material encountered in
the present project we created several additional values of the seg element’s type
attribute: alternate, def, paraphrase, syntax, and constituent. These expand the
categorization of glosses, refine categorization of derivational material, and deal more
precisely with comments on compound constituents. We also verify, correct and make
additional citations thereby making substantial contributions to textual research in the
process of undertaking the higher-level encoding of the commentary.

Keywords: XML, TEI, Sanskrit, commentary, text-encoding

1 Introduction
Ajotikar and Scharf (2023) described standardized procedures for creating XML editions of
Sanskrit texts containing commentaries in accordance with the Text Encoding Initiative (TEI)
guidelines and discussed issues related to it that arose in their mark-up of Bhaṭṭi’s Rāvaṇavadha
with Mallinātha’s commentary. In this paper, we present additional issues that arose in the
TEI mark-up of Kālidas’s Raghuvaṁśa with Mallinātha’s commentary Sañjīvanī. We completed
mark-up of the first five contos of the Raghuvaṁśa and the first three cantos of the Sañjīvanī.

2 File preparation procedure
The file preparation procedure includes three phases. In the first phase, the base text and the
commentary are transcoded into the Sanskrit Library Phonetic ASCII encoding (SLP1), each in
its own file. In the second phase, sandhi-analysis is conducted on the base text in a separate file.
During this process, each word in the base text file is assigned an xml:id which serves as the
key to co-ordinate the two files. The commentary is tagged in a third file which references words
in the base text by referring to the xml:id of the word as the value of the corresp attribute.

3 Details of data preparation
Considerable effort is required to obtain quality character data of the base text and commentary.
First of all, when creating a digital edition, it is necessary to consider the copyright issue. To

52

simply reproduce a printed edition in the digital medium without adding significant knowledge
without permission of the holder of a valid copyright would violate intellectual property rights.
However, no intellectual property rights would be violated by making a digital copy of an edition
in the public domain. Nor would intellectual property rights be violated by producing a new
edition with significant new knowledge added. The editions we considered are all in the public
domain. We chose to tag Kale’s (1922) edition. Although character data of the Raghuvaṁśa
is easily found on the Web, character data of Mallinātha’s commentary is not. To type the
commentary would be time-consuming and expensive compared with deriving character data
by optical character recognition (OCR). However, the OCR output available at archive.org
produced several years ago was junk. Since then OCR software that produces relatively good
output of a Devanāgarī printed page has become available on line. Initially we processed the
scanned images of Kale (1922) at https://ocr.sanskritdictionary.com. Yet proof-reading
this output revealed that it needed extensive correction which significantly affected the pace
of the project. We then discovered a few digital editions of the Sañjīvanī, one of which with
Devanāgarī character data is available at https://www.ebharatisampat.in. We transcoded
into SLP1 the first five sargas of this edition, the source of which is not identified, and edited it
to conform with Kale’s (1922) edition. Thereby we obtained creditable digital character data of
the Sañjīvanī efficiently.

3.1 The saṁhitā file
We refer to the file containing the continuous base text without sandhi analysis as the saṁhitā
file. In this file, each verse of the base text is analysed metrically. Although the generic metrical
pattern of each canto is primarily the same, identifying the meter-type in cantos composed in
the Upajāti meter also recognized the specific subtype of each verse. This information is not
documented in any previous digital or printed edition of the Raghuvaṁśa.

Figure 1 shows a sample of the mark-up of a verse, and Table 1 shows the metrical patterns
employed in the first five cantos.

Figure 1
TEI encoding of metrical patterns in Kālidāsa’s Raghuvaṁśa

53

Table 1
Meter identification

sarga verses meters subtype
1 95 º;nua;�u ;B,a, :pra;h;
a;SRa;¾�a;a None
2 75 o+.pa:ja;a;�a;ta, ma;a;�a;l+.n�a;a ³;�a:;dÄâ , Ba;dÒ +a, o+.pea;ndÒ +va:j"a;a, I+.ndÒ +va:j"a;a, .ja;a;ya;a,

ma;a;l+.a, hM ;s�a;a, k
 +:a;�a;tRa, ma;a;ya;a, ;�a;sa;�a:;dÄâ , ba;a;l+.a, .=+a-
;ma;a, va;a;¾�a;a, Za;a;l+.a, bua;�a:;dÄâ , ;hE ;m�a;a, º;a;dÒ +Ra

3 70 vMa;Za;~Ta, h;�a:=+¾�a;a None
4 88 º;nua;�u ;B,a, :pra;h;
a;SRa;¾�a;a None
5 76 o+.pa:ja;a;�a;ta, va;sa;nta;l+.�a;ta;k+:a ma;a;�a;l+.n�a;a, :pua;�/�a;Spa;ta;a;g{a;a, ;hE ;m�a;a, o+.pea;ndÒ +va:j"a;a, ma;a-

;ya;a, I+.ndÒ +va:j"a;a, .ja;a;ya;a, ba;a;l+.a, k
 +:a;�a;tRa, va;a;¾�a;a,
Ba;dÒ +a, Za;a;l+.a, º;a;dÒ +Ra, ³;�a:;dÄâ , bua;�a:;dÄâ , ;�a;sa;�a:;dÄâ , .=+a-
;ma;a

3.2 The padapāṭha file
In the padapāṭha file, sandhi is analysed between words in the saṁhitā file, and each pada is
set in a w element and provided with a unique xml:id attribute. Figure 2 shows an example of
the markup in the padapāṭha file. Table 2 shows the word count in each of the first five cantos.

Figure 2
Word count in the first five sargas of Kālidāsa’s Raghuvaṁśa

Generally we do not need to analyse any compound into its constituents in the padapāṭha file.
However, Mallinātha often dissolves compounds, and provides synonyms, derivations, references
and other comments, not only on the compound as a whole but also on its constituents. In
order to facilitate precise reference to the constituents commented upon in the commentary file,
we split compounds into their constituents where the commentary analyzes the compound and
provides a synonym, lexical reference or derivation for any of its constituents. Each compound

54

Table 2
Pada count

sarga verses padas
1 95 969
2 75 1039
3 70 1029
4 88 857
5 76 1060

constituent is set in an m element and provided with an xml:id attribute. Table 3 shows the
count of the compound padas that are so analyzed into their constituents in the first three
cantos, the percentage of padas analyzed, and number of segmented constituents.

Table 3
Tally of padas, analyzed compounds, and their constituents in cantos 1 and 2

sarga verses padas analyzed
padas

percentage
of padas
analyzed

segmented
constitu-
tents

1 95 969 88 9.08% 215
2 75 1039 99 9.53% 250
3 70 1029 71 7.00% 178

3.3 Coordinating analysis in the commentary file with the padapāṭha file
The commentary file consists of the digital character data of the Sañjīvanī in SLP1 encoding
analyzed in accordance with the TEI guidelines in the same manner as Ajotikar and Scharf (2023)
analyzed Bhaṭṭi’s Rāvaṇavadha. Analytic elements ab, seg, w, etc. are coordinated with specific
words, compound constituents, and morphemes in the padapāṭha file by referring to the xml:id
of the w element containing the word, or the m element containing the compound constituent or
morpheme in the padapāṭha file as the value of the corresp attribute of the analytic element
in the commentary file. In the following subsections, we illustrate our method of tagging the
constituents of compounds analyzed by Mallinātha, and how we supply information assumed as
obvious by Mallinātha in order to make its relationship to the text commented upon explicit.

3.3.1 Compound constituent analysis
When Mallinātha supplies any information regarding a constituent of a compound, technically
there is no word in the base text to which it corresponds. As mentioned above, in such cases, we
split the compound pada in the padapāṭha file into its constituents and set each constituent in
an m element with a unique xml:id. This xml:id occurs as a value of the corresp attribute in
the analytic element in the commentary file. Below we provide four examples of the analysis of
words into constituents. The first illustrates a simple compound analyzed into its constituents.
The second analyzes a taddhita derivate into its constituent base and affix. The third and
fourth present the analysis of compounds whose first and second constituent respectively undergo
alteration in the compound.

1. In the very first verse, the word pārvatīparameśvarau (s1.v1.w7) is a dvandva compound.
Mallinātha comments on each of the constituents of the compound as follows:
:pa;vRa;ta;~ya;a;pa;tyMa .~:��a;a :pa;a;vRa;t�a;a Á ‘ta;~ya;a;pa;tya;m,a’ I+.tya;¾,a Á ‘;�a;f:ñÑ*+:a;¾a;V,a’ I+.tya;a;
a;d;na;a .z� +.a;p,a Á :pa;a;vRa;t�a;a ..ca :pa:=+mea:(õ;a:=+(ãÉa
:pa;a;vRa;t�a;a;pa:=+mea:(õ;a:=+Ea Á :pa:=+ma;Za;b.dH .sa;va;eRa:�a;ma;tva;dùÅ;a;ea;ta;na;a;TRaH Á

55

The word pārvatī designates the female offspring of the mountain (parvata). The
suffix aṇ is added (by A. 4.1.83 in the meaning of ‘his offspring’) by A. 4.1.92,
after the word parvata. The feminine suffix ṅīp is added by A. 4.1.15 ṭiḍḍhāṇañ
etc. (The dvandva compound) pārvatīparameśvarau is dissolved as pārvatī and
parameśvara. The constituent parama (of the latter) denotes ‘best of all’.

Here Mallinātha gives the derivation of the word pārvatī and supplies the sūtras for the
same. Then he shows the paraphrase of the compound (vigrahavākya). In order to associate
all the information about each constituent in the commentary file with its constituent in
the padapāṭha file, we split the compound into two constituents in the padapAWa file as
shown below:

<w n='7' xml:id='s1.v1.w7'>pArvatIparameSvarO
<m n='1' xml:id='s1.v1.w7.m1'>pArvatI</m>
<m n='2' xml:id='s1.v1.w7.m2'>parameSvara</m>

</w>

2. Mallinātha analyzes other derivates besides compounds into their constituents; these in-
clude taddhita derivates. For example, Mallinātha comments on the word prasraviṇīm
(s2.v61.w17) as follows:
:pra;~åò:a;vaH »�a;a:=+~åò:a;a;va;ea Y;�/////�a;~ta ya;~ya;aH .sa;a ta;Ma :pra;~åò:a;
a;va;¾�a;Ma
The word prasraviṇīṁ means one who has a flowing forth, i.e. flow of milk.

Here Mallinātha does not merely supply the paraphrase but provides a synonym of the
first constituent prasrava. To the word prasrava is added the possessive suffix in. Its first
component is the word prasrava, and the second component is the affix in. In the pa-
dapāṭha file, we treat such cases similarly to the way we treat compounds, setting each
component of the taddhita derivate in an m element. For the affix, we use the bare affix
without any markers or supplementary sounds added for pronunciation. Thus here the
second component is in, not ini as provided by Pāṇini A. 5.2.115 with i added for the sake
of pronunciation.

<w n=`17' xml:id=`s2.v61.w17'>prasraviRIm
<m n=`1' xml:id=`s2.v61.w17.m1'>prasrava</m>
<m n=`2' xml:id=`s2.v61.w17.m2'>in</m>

</w>

3. In the process of dividing a compound into its constituents, there are a few instances of
altered forms where a decision needs to be made regarding how to designate the base of the
altered form. For example, for anāsthā (s2.v57.w15), which is a nañ-tatpuruṣa compound,
Mallinātha provides the synonymous nañ-tatpuruṣa anapekṣā, and adds a lexical reference
for the second constituent āsthā of the original compound. He states:
Za:=� +a;=e +Sva;na;a;~Ta;a Ka;�va;na;pea:»Ea;va Á ‘º;a;~Ta;a tva;a;l+.}ba;na;a;~Ta;a;na;ya;�a;a;pea:»a;a;sua k+:Tya;tea’ I+.�a;ta ;
a;va:(õ;aH Á
Indifference towards bodies is indeed detachment. Viśva provides four synonyms
of the word āsthā: ālambana, āsthāna, yatna, and apekṣā.

In order to associate the lexical reference of the second constituent of anāsthā, we dis-
solve the compound into two constituents. However the first constituent an is not a free
morpheme. It is an altered form of the negative particle na. Rather than using the altered
form of the particle an before vowel-initial subsequent constituents, and a before consonant-
initial subsequent constituents, we uniformly use the original unaltered particle na. In other
words, we do not use the constituent of a compound as it occurs in it; rather we use the
base word as lexicalized in the padapāṭha file, as shown below.

<w n=`15' xml:id=`s2.v57.w15'>anAsTA
<m n=`1' xml:id=`s2.v57.w15.m1'>na</m>
<m n=`2' xml:id=`s2.v57.w15.m2'>AsTA</m>

</w>

56

4. The previous example was of a compound in which the first constituent was altered. Here
we provide an example of a compound in which it appears that the final constituent is
altered. The word kuṇḍodhnī (s1.v84.w3) has two constituents: kuṇḍa and udhas. Malli-
nātha comments on the compound as follows:
ku +:¾q+.�a;ma;va;ea;Da º;a;p�a;a;nMa ya;~ya;aH .sa;a ku +:¾q+.ea.éÈåî Åéé:a� ;a Á ‘�+:Da;~tua ëÐÅÉì*:� +:a;ba;ma;a;p�a;a;na;m,a’ I+.tya;ma:=H Á ‘�+:Da;sa;ea Y;na;z, ’ I+.tya-
;na;z+.a;de ;ZaH Á ‘ba;hu ;v.r�a;a;he :�+.Da;sa;ea .z� +.a;S,a’ I+.�a;ta .z� +.a;S,a Á Á
The one whose breast, i.e. udder, is like a pitcher. Amara states that the word
ūdhas is neuter and its synonym is āpīna. The final sound of the word ūdhas is
replaced by anaṅ, by A. 5.4.131 ūdhaso ’naṅ, in a bahuvrīhi compound of which the
final constituent is ūdhas. The feminine suffix ṅīṣ is provided after the bahuvrīhi
compound by A. 4.1.25 bahuvrīher ūdhaso ṅīṣ.

The provision of the samāsānta suffix anaṅ at the end of the compound whose final con-
stituent is ūdhas results in the altered morpheme ūdhan, which after the addition of the
feminine suffix ṅīṣ appears as ūdhnī. This morpheme is not a free morpheme, never occurs
as an independent word, and is not lexicalized. Hence, we restore the second compound
constituent to the base form ūdhas in the padapāṭha file and set it in an m element with
an xml:id as shown below. In order to associate the passage of the lexical resource in the
commentary file with the constituent in the padapāṭha file, this xml:id is referred to as the
value of the corresp attribute of the seg element in which Mallinātha makes reference to
the passage in Amara’s lexicon that provides the synonyms for the constituent.

<w n=`3' xml:id=`s1.v84.w3'>kuRqoDnI
<m n=`1' xml:id=`s1.v84.w3.m1'>kuRqa</m>
<m n=`2' xml:id=`s1.v84.w3.m2'>UDas</m>

</w>

3.3.2 Inferred padas in the commentary file
One would expected that scholastic commentaries like Mallinātha’s Sañjīvanī comment on al-
most every word of the base text. However Mallinātha does not always cite the exact pada of the
base text. Even without explicitly repeating a compound or other word analyzed, he provides
a compound-analysis or derivation, and just thereby refers to the original reading implicitly. In
such cases, we add the whole pada analyzed to the commentary file in a w element provided
with the attribute-value pair type=`inferred'. This procedure is an adaptation in XML of the
square brackets in which the word is inserted in the printed edition by the editor. Kale (1922)
provides the inferred pada in square brackets before or at the end of the compound analysis. We
invariably add the inferred pada at the beginning of the compound analysis. Sometimes Malli-
nātha omits a pada of the base text in his commentary. Usually it is a particle like ca or eva that
is omitted. We deal with such an omission by including the particle at the appropriate place in
the commentary file in a w element provided with the attribute-value pair type=`supplied'.
Just one such instance occurs in the first canto; none in the second or third. Table 4 shows the
distribution of padas inferred in the first three cantos.

Table 4
Pada count

sarga verse padas inferred padas percentage
1 95 969 91 9.39%
2 75 1039 89 8.57%
3 70 1029 81 7.87%

57

4 Issues in tagging the commentary
4.1 Enhancement of attribute-value pairs
Although Ajotikar and Scharf (2023) standardized the procedure of tagging kāvya text with
commentary, that sample study was based upon a small extent of text. The project of marking
up the first five cantos of the Raghuvaṁśa with the Sañjīvanī extends the tagging of such
texts with commentary significantly. While our procedures remain predominantly the same,
the additional data required us to enhance the set of attribute-value pairs in order to record
previously unencountered information in the commentary. The discussion hereafter focuses on
reporting these enhancements with representative examples.

4.1.1 Synonymity
Ajotikar and Scharf (2023, p. 130) state

Where Mallinātha supplies a word with a synonym, the synonym is put in a seg element
as a sister to the w element containing the word. The seg element is supplied with the
attribute-value pair type=`synonym' and a corresp attribute with the value of the
xml:id of the w element.

While observing his procedure in the current project, we noticed that Mallinātha treats com-
pounds differently from simple words. When he provides a synonym of a simple word, he almost
always supplies a reference to a thesaurus. For example, when he comments on the word uḍupena
(s1.v2.w11) he supplies a reference to the Amarakośa.

o+.qu +.pea;na :pìÉÅ;+vea;na Á ‘o+.qu +.pMa tua :pìÉÅ;+vaH k+:ea;lH ’ I+.tya;ma:=H Á
The word uḍupena ‘by raft’ means plavena ‘by boat’. Amara records (two synonyms)
plava and kola for uḍupa.

However, when Mallinātha provides a synonym of a compound of only occasional occurence, he
makes no reference to a lexical resource because no lexical treatise includes the compound. In
this case Mallinātha creates a synonym by replacing each constituent in the compound with a
synonym. For example, he composes the synonym īśvarakiṁkarasya for the word devānucara-
sya (s2.v52.w2). It is observable that he formulated the synonym by replacing the constituents
deva and anucara with the synonyms īśvara and kiṁkara respectively. In both kinds of cases,
whether he provides a lexical reference or not, we set the synonym in a seg element with the
attribute-value pair type=`synonym'.

Different from the above cases of synonymity, we discovered three types of cases where Ma-
llinātha glosses a word with a word that is not simply a synonym. In one case the gloss is a
morphological alternate. In many cases, the gloss is a semantic explanation. These are of two
types: an explanatory word that implicitly explicates grammatically known syntactico-semantic
relations, and an explanatory word that merely explicates contextual semantics. We illustrate
these types of glosses with an example of each below.

1. There is only one instance where Mallinātha provides an alternate morphological form in a
gloss:
.ja:=+sa;a .ja:=+ya;a ;
a;va;na;a (s1.v23.w9).

The word jarā has the optional form jaras when a vowel-initial nominal termination follows.
Here Kālidāsa uses the optional form jarasā. Mallinātha comments on it by supplying
the other alternate form jarayā. This cannot be treated as a synonym since an optional
morphological form of the same nominal base is not a synonym. We cover this instance by
formulating a new attribute-value pair for the seg element type=`alternate'.

2. In the many instances where Mallinātha provides a gloss that is a semantic explanation, we
assign the value def (definition) to the attribute type in the seg element. Our first exam-
ple illustrates the type of gloss by which he provides an explanatory word that implicitly

58

explicates grammatically known syntactico-semantic relations. For the word upahāsyatām
(s1.v3.w4) ‘the state of being to be ridiculed’, Mallinātha provides the gloss upahāsaviṣaya-
tām ‘being an object of ridicule’. Here the explanatory word implicitly refers to grammatical
rules that explicate the semantic structure of the glossed word. By stating upahāsa-viṣaya,
Mallinātha implicitly refers to one of the senses in which the kr�tya affixes are provided after
a root, namely, to denote the direct object of the action of the root, as stated by A. 3.4.70
tayor eva kr�tyaktakhalārthāḥ.

Our second example illustrates the type of gloss by which Mallinātha provides an ex-
planatory word that merely explicates contextual semantics. He usually adds the phrase
ityarthaḥ after such contextually explanatory glosses. The compound ānākarathavartma-
nām (s1.v5.w6) ‘the track of whose chariots reach heaven’ is explained by providing the
compound indrasahacāriṇām ‘companions of Indra’ concluded with the phrase ityarthaḥ.
The statement that those whose chariots reach heaven are companions of Indra clearly does
not provide a synonym because the gloss is contextually specific. Rather it states simply in
ordinary terms what Kālidāsa poetically phrases in a term that could have different mean-
ings in different contexts. The gloss does not denote the primary meaning of the glossed
word.

4.1.2 Syntax
As is commonly done in scholastic commentaries, Mallinātha provides derivations of most of
the words in the base text while commenting on a verse. Often these derivations are explicit
grammatical comments relevant to construing the syntactic relation of the word to others in
the sentence. In such cases, the seg element in which the statement is set is provided with the
attribute-value pair type=`syntax'. Such notes may concern the syntax of the main verb of a
clause, the participatory role a denoted object plays in an action (kāraka) denoted by a nominal,
or any other relation. The following examples illustrate these points.

1. Regarding the verb mucye ‘I am released’ (s1.v72.w2), Mallinātha comments mua;�+:ea Ba;va;a;�a;ma Á
k+:mRa;a;¾a l+.f, Á ‘I am freed. The laṭ affix is provided to denote the direct object (karman).’ The
first sentence provides a paraphrase of the finite verb form of the root muc ‘free, liberate’
with the past passive participle of the same root plus a finite verb of the root bhū ‘be’.
The second sentence makes an explicit grammatical statement concerning syntax, namely,
that the l-affix laṭ denotes the direct object (karman). This explicit statement clarifies that
the word mucye occurs in the present tense and is passive. The point is significant for the
syntactic structure of the sentence.

2. Mallinātha glosses the word locanābhyām (s2.v19.w11) with the word karaṇaiḥ. Thereby
he indicates that the word locana is the instrument of the action of drinking denoted by
the root pā ‘drink’ in the finite verb form papau in the verse.

3. While explaining the word ikṣvākūṇām (s1.v72.w8), Mallinātha provides the reference to
the grammatical rule A. 2.3.50 ṣaṣṭhī śeṣe which explains the use of its vibhakti stating,
I+»va;a;kU +:¾a;a;�a;ma;�a;ta Zea;Sea :Sa;�� +a Á ‘In the word ikṣvākūṇām, the sixth-triplet termination occurs in a
remaining sense.’

4.1.3 Constituent
1. Generally Mallinātha reveals the constituents of a compound when he gives the paraphrase

(vigrahavākya) but does not repeat those constituents outside the paraphrase. Occasionally,
however, he mentions the constituents separately and comments on them in detail. For ex-
ample, while commenting on the word gūḍhākāreṅgitasya (s1.v20.w3), Mallinātha describes
the technical meaning of the words ākāra and iṅgita. His comments are as follows:
Za;ea;k+:h;Sa;Ra;
a;d;sUa;.ca;k+:ea Brua;ku +:f� ;a;mua;Ka:=+a;ga;a;
a;d:=+a;k+:a:=H Á I+.
a;ñÍç ÅÅ*:+.tMa ..cea;
a;�;tMa &+.d;ya;ga;ta;
a;va;k+:a:=+ea va;a Á ‘I+.
a;ñÍç ÅÅ*:+.tMa &+.�ç Å +ta;ea
Ba;a;va;ea ba;
a;h:=+a;k+:a:= º;a;kx +:�a;taH ’ I+.�a;ta .sa:êêÁ*.a;naH Á
The word ākāra ‘shape’ means facial expression by knitting the eyebrows etc.

59

which indicates (the emotions) sorrow, joy etc. The word iṅgita ‘indication’ means
a gesture or change of feeling. Sajjana says iṅgita means a feeling in the heart,
and ākāra means an external expression.

Here Mallinātha not only provides definitions of both constituents ākāra and iṅgita but also
supplies a lexical reference. In order to coordinate this information with the base text we
mention the constituents of the compound in separate m elements in the padapāṭha file. In
the commentary file, we introduce the new value constituent of the type attribute in the
seg element that has the corresp attribute with the value of the xml:id of the constituent
in the padapāṭha file. Figure 3 shows this segment marked up in the padapāṭha file.

Figure 3
TEI encoding of Mallinātha’s commentary

on the compound constituents ākāra and iṅgita

4.1.4 Paraphrase
There are many instances where Mallinātha elucidates a word in the base text with a paraphrase.
Such paraphrases are different from synonyms, which are single words, from vigrahavākyas,
which are paraphrases of compounds, and from definitions. In order to deal with this kind of
paraphrase we introduce a new value paraphrase of the type attribute of the seg element as
shown in the following examples:

1. Mallinātha explains the word vanāya (s2.v1.w6) (dative of vana ‘forest’) by paraphrasing
it vanaṁ gantum ‘in order to go to the forest’. He supplies the infinitive of the verb gam
‘go’ and changes the dative to an accusative to show that the forest is the direct object (ka-
rman) of the action of going. This paraphrase precisely reformulates the original expression
in accordance with the ellipsis which Pāṇini deals with in A. 2.3.14 kriyārthopapadasya ca
karmaṇi sthāninaḥ.

<w n=`10' xml:id=`s2.v1.w6'>vanAya</w>
<seg type=`paraphrase' corresp=`s2.v1.w6'>vanaM gantum</seg>

Exactly similar is the paraphrase yajñaṁ kartuṁ ‘in order to perform a yajña’ for yajñāya
‘for a yajña’ (s1.v26.w4).

2. In the compound phalānumeyā (s1.v20.w5) ‘to be inferred by results’, Mallinātha explains
the constituent anumeya ‘to be inferred’ by paraphrasing it anumātuṁ yogyā ‘fit to be
inferred’ which clarifies that the sense of the kr�tya affix yat occurs in the sense of being fit
or suitable (arha) in accordance with A. 3.3.169 arhe kr�tyatr�caś ca. We mark this in the
commentary file as follows:

60

<w n=`10' xml:id=`s1.v20.w5'>PalAnumeyA</w>
…
<seg type=`paraphrase' corresp=`s1.v20.w5.m2'>anumAtuM yogyA</seg>

3. Similarly, Mallinātha explains the word vivakṣuḥ ‘desirous to speak’ (s2.v43.w9) by para-
phrasing it vaktum icchuḥ thereby showing that the word is formed from the desiderative
root vivakṣa derived from the primary root vac. The commentary file marks this paraphrase
as follows:

<w n=`9' xml:id=`s2.v43.w9'>vivakzuH</w>
<seg type=`paraphrase' corresp=`s2.v43.w9'>vaktum icCuH</seg>

4.1.5 Words supplied by the commentator
Occasionally Mallinātha supplies a word to fill out the syntax of the verse upon which he
comments, usually but not always by putting iti śeṣaḥ after the word. In such cases, we set the
word in a w element with the type attribute value added, and an n attribute given the value
101 or above. Several instances occur in the first three sargas (1.37, 1.68, 1.69, 1.83; 2.56; 3.6,
3.68).

4.2 Quotations
Ajotikar and Scharf (2023) included the procedure of tagging a quotation in a commentary:
add the reference in a note element which has the text identifier in a bibl element which in
turn has the location within the text in a biblScope element. However they did not identify
the quotations in their sample data. In this project, we tried to identify the source of every
quotation Mallinātha cites. We can categorise these quotations as follows:

1. quotations from lexical resources and metrical literature,
2. quotations from the grammatical resources which are mostly the sūtras quoted from the

Aṣṭādhyāyī,
3. other quotations which are not from lexical and grammatical literature.

We refer to two editions of the Raghuvaṁśa, one by Nandargikar (1982) and one by Pandit
(1874). Nandargikar provides several appendices including a list of the works and authors quoted
by Mallinātha, and a list of unidentified quotations. Pandit includes among his appendices a list
of works and authors referred to by Mallinātha, and a list of unidentified quotations referred to
by Mallinātha. However, neither editor made any effort to verify the original source to which
Mallinātha attributes a quotation. We did. In our attempt to verify the original source of the
quotation, we found that there are many instances where the source to which the quotation is
attributed does not in fact contain the passage. Closer examination revealed that some of the
quotations occur in a different text from the one reported by Mallinātha. We traced the correct
source of some of these, and in addition some of the unidentified quotes. We provide the correct
source in our XML commentary file. The works which are not extant today but were available
to Mallinātha are provided with the reference to their entry in the New Catalogus Catalogorum
(NCC). Yet many quotations which we could not locate remain unidentified.

4.2.1 Quotations from lexical resources
Mallinātha refers heavily to lexical resources. He refers not only to the base text of such resources
but also occasionally to commentaries on them. As mentioned, we carefully attempted to verify
every quotation from a lexicon against the original source; doing so revealed numerous errors
in the printed editions. We categorize the quotations under three headings: verified, corrected,
and unidentified.

Verified: These quotations are found in the original texts cited. The following is a list of the
lexical resources (kośas) to which Mallinātha refers in the first three cantos:

61

1. Anekārthasaṅgraha of Hemacandra
2. Anekārthasamucchaya of Śāśvata
3. Abhidhānaratnamālā of Halāyudha
4. Amarakośa of Amara
5. Kṣirasṭāmin’s commentary on the Amarakośa
6. Ekākṣararatnamālā of Mādhava
7. Nānārthārṇavasaṅkṣepa of Keśava
8. Vaijayantikosha of Yādavaprakāśa
9. Viśvaprakāśa of Maheśvara

10. A lexicographical work of Sajjana no longer extant

For the last item, the lexical work composed by Sajjana referred to by Mallinātha (s1.v2.w11,
s1.v20.w3), we provide the reference to the NCC (Dash 2015, 160a, first entry).

Corrected: When we discover the correct source of a quote which the printed edition of the
Sañjīvanī incorrectly attributes to a different text, we provide the correct source. We do
so by setting the incorrect source in the sic element, and the correct source in the corr
element. In the first three cantos, there are eleven instances where we corrected the source.
For example, while commenting on the word dākṣiṇyarūḍhena, for the constituent dākṣi-
ṇya, Mallinātha provides the synonym paracchandānuvartanam ‘following another’s will’.
Subsequently he states,

‘d;a:»a;¾aH .sa:=+l+.ea;d;a:=+pa:=+.cC+.nd;a;nua;va;�a;tRa;Sua’ I+.�a;ta Za;a:(õ;a;taH Á
According to Śāśvata, the word dakṣiṇa means ‘straight-forward,’ ‘generous’ and
‘behavior as per another’s will’.

Despite his claim that this quotation is in Śāśvata’s Anekārthasamucchaya, it is not found
in it. It is actually found in the Viśvaprakāśakośa. We correct it as follows:

<seg type=`lexicon' corresp=`s1.v31.w2.m1'>dakziRaH
saralodAraparacCandAnuvartizu
<quote>dakziRaH saralodAraparacCandAnuvartizu</quote>
…iti <sic>SASvataH</sic><corr>viSvaH</corr>

</seg>

The following is the list of all corrected instances in the first three cantos:

1. Za;a;l (s1.v13.w3.m1): ya;a;d;va corrected to Za;a:(õ;a;ta
2. nea;m�a;a;na;a;m,a (s1.v17.13.m1): ya;a;d;va corrected to h;l+.a;yua;Da
3. :vea;l+.aH (s1.v30.w2.m1): ;
a;va:(õ;a corrected to Za;a:(õ;a;ta
4. d;a;a:»a;¾yMa (s1.v31.w2.m1): Za;a:(õ;a;ta corrected to ;
a;va:(õ;a
5. .sua:=+�a;BaH (s2.v3.w7): ;
a;va:(õ;a corrected to Za;a:(õ;a;ta
6. d;a;va;m,a (s2.v8.w6): ya;a;d;va corrected to Za;a:(õ;a;ta
7. .=+a;gaH (s2.v15.w8.m1): Za;a:(õ;a;ta corrected to ;
a;va:(õ;a
8. .=;»a;¾a;m,a (s2.v30.w7.m1): ya;a;d;va corrected to ;
a;va:(õ;a
9. k+:ñÍöÐÅÅ*: (s2.v31.w5.m3): ;
a;va:(õ;a corrected to O;;k+:a:»a:=;=+�a;ma;a;l+.a

10. º;d;hùÅ:a;ta (s2.v32.w7): ya;a;d;va corrected to ;Da;na:úêÁÁ*+;ya (d;Za:�+.pa;k)
11. gua;¾a;a;g{ya;va;�a;tRa;na;a (s3.v27.w10): ;
a;va:(õ;a corrected to Za;b.d:=+�a;sa;ma;nva;yaH
Concerning 10 (s2.v32.w7), the reading in the edition, namely, ‘º;�a;Da:»ea;pa;a;dùÅ;a;sa;h;nMa .tea:jaH :pra;a;¾a;a-
;tya;yea;Sva;
a;paY I+.�a;ta ya;a;d;vaH , suggests that the author of the cited passage is Yādava, the author
of the Vaijayantīkośa. However, the passage occurs in the Daśarūpaka (Parab 1941, p. 42),
not in any lexical resource.

Concerning 9 (s2.v31.w5.m3), Mallinātha mistakenly claims that the verse line k+:ñÍöÐÅÅ*:H :pa-
;a:»a;
a;va;Zea;Sea .~ya;a;�ç Åu +�a;a;k+:a:=e yua;�a;Da;
a;�;=e occurs in Viśva’s Viśvaprakāśakośa. However, after careful ex-
amination, the quote is found in the Ekākṣararatnamālā. The first edition of the text by

62

Ramnikvijay (2019) identifies its title as Ekākṣaraśabdamālā and its author as Haritālarājā-
mātyamādhava. These are not found as such in the NCC. Instead, the NCC, vol. 3, p.59b
(the 17th entry in the column), edited by Raghavan (1967), reads

O;;k+:a:»a:=;=+�a;ma;a;l+.a by Mādhavācārya, son of Māyana, minister of Harihara.

Thus the NCC provides the title Ekākṣararatnamālā and identifies the author as Mādha-
vācārya, son of Māyana, minister of Harihara. What is given as the name of the author in
the printed edition, Haritālarājāmātyamādhava, means ‘Mādhava, a minister of Haritāla’,
which agrees to some extent with the information found in NCC. In this case, we provide
references to both the printed edition and the NCC in the comentary file.

Unidentified: There are just two instances in which the quotation is unidentified:

1. At the end of verse 2.35, Mallinātha quotes the verse,
:pxa;�a;Ta;v�a;a .sa;�a;l+.lM .tea:ja;ea va;a;yua:=+a;k+:a;Za;mea;va ..ca Á
.sUa;ya;Ra;.ca;ndÒ +ma;sa;Ea .sa;ea;ma;ya;a:j�a;a ..cea;tya;�;mUa;tRa;yaH Á Á

and claims that it is quoted from the Vaijayantīkośa. However the quote is not found
in the Vaijayantīkośa.

2. Ba:=+¾ea :pa;ea;Sa;¾ea Ba;mRa I+.�a;ta ;hE ;maH Á (s3.v12.w6): When Mallinātha comments on the word garbha-
bharmaṇi, he provides a lexical reference for the constituent bharman claiming that it
is from Hemacandra’s Anekārthasaṅgraha, but it is not found.

There is one interesting case where Mallinātha refers to a variant reading in the Amarako-
śa which is noted by Liṅgayasūrin in his Amarapadavivr�ti (Ramanathan 1978, p. 37). While
commenting on the word atrasta (s1.v21.w3), he quotes the Amarakośa regarding the constituent
trasta as �a;~ta;ea B�a;a:�+:B�a;a:�+:k+:B�a;a;lu +.k+:aH . In his citation, the quote contains the word trasta instead of
trasnu which is found in the passage in most of the printed editions of the Amarakośa (º;D�a;a;=e k+:a-
;ta:=;�a;=+:ïîåéa;Ea B�a;a:�+:B�a;a:�+:k+:B�a;a;lu +.k+:aH). Liṅgayasūrin in his Amarapadavivr�ti registers a variant on this verse
saying, �a;~ta;ea I+.�a;ta va;a :pa;a;FH . Apparently Mallinātha knew this line in the Amarakośa as º;D�a;a;=e k+:a;ta-
:=;�a;~ta;Ea B�a;a:�+:B�a;a:�+:k+:B�a;a;lu +.k+:aH . This is very significant from the point of view of tracing Mallinātha’s
sources.1

4.2.2 Quotations from treatises on meter
The verses of each canto are predominantly composed in a single metrical pattern; however, the
pattern changes towards the end of the canto. Whenever the metrical pattern changes, Malli-
nātha cites a characterization of the metrical pattern (lakṣaṇa) but never tells the source of the
citation. In the first three cantos there are five occurrences where he identifies the meter and
then cites its lakṣaṇa (s1.v95, s2.v1, s2.v75, s3.v1, s3.v70). The sources of these citations are
not identified in the printed editions. We identify them. Four of them occur in Kedārabhaṭṭa’s
Vr�ttaratnākara, and one occurs in Gaṅgādāsa’s Chandomañjarī.

4.2.3 Quotations from grammatical texts
Mallinātha refers to the sūtras of the Aṣṭādhyāyī in most of the derivations and syntactic
comments he provides. Occasionally he quotes from commentaries like the Vyākaraṇamahābhā-
ṣya and Kāśikāvr�tti. We have verified all of these grammatical quotations except one. Mallinātha
attributes the quotation, na :ke +:va;lM (rUa;ya;ma;a;¾Ea;va ;
a;kÒ +:ya;a ;�a;na;�a;ma:�Ma k+.=+¾a;Ba;a;va;~ya Á º;
a;pa ta;
a;hR ga;}ya;ma;a;na;a;
a;pa (s2.v34),
to a work called the Nyāsoddyota which is not extant. For this quote we provide the reference
to the entry for the text in the NCC.

One derivation is interesting because it reveals a discrepancy among grammatical texts, partic-
ularly regarding lists (gaṇas). The derivation concerns the word vārdhaka (s1.v8.w5). Mallinātha
derives it by adding the affix vuñ after the base vr�ddha by A. 5.1.133 dvandvamanojñādibhyaś

1Mallinātha was from Andhra. Hence it is not surprising that he knew the variant noted by a southern
commentator.

63

ca, stating, dõ ;ndõ ;ma;na;ea;¼a;a;
a;d;Bya;(ãÉa Á I+.�a;ta vua;Vpra;tya;yaH Á Interestingly the word vr�ddha is not included in the
gaṇa that begins with the word manojña as per the list in the Kāśikāvr�tti on A. 5.1.133. If
the reading in the Kāśikāvr�tti is followed, then the word vārdhaka cannot be derived. However
the Gaṇaratnamahodadhi does include the word vr�ddha in the gaṇa manojñādi (verse 409). We
must suppose that either Mallinātha knew a reading in the Kāśikāvr�tti which included the word
vr�ddha in the gaṇa manojñādi, or he refered to the Gaṇaratnamahodadhi.

4.2.4 Micellaneous quotations
Apart from lexical and grammatical texts, Mallinātha quotes verses or passages from many other
texts. As with the lexical quotations, we attempted to verify the source of these and categorize
them according to whether they have been verified, corrected, or remain unidentified. We
provide the reference in the critical edition of the text if available. The number of unidentified
micellaneous quotations is greater than the unidentified lexical quotations. The list of these
other texts quoted in the first three cantos is as follows:

1. Agnipurāṇa
2. Aṣṭāṅgasaṅgraha
3. Āśvalāyanagr�hyasūtra
4. Kīrātarjunīya
5. Gautamdharmasūtra
6. Cāṇakyanīti
7. Taittirīyasaṁhitā
8. Nītisāra
9. Parāśarasmr�ti

10. Br�hajjātaka
11. Manusmr�ti
12. Mandāramaranda
13. Mahābhārata
14. Mānavagr�hyasūtra
15. Meghadūta
16. Yājñavalkyasmr�ti
17. Rāmāyaṇa
18. Śaṅkhasmr�ti
19. Saṅgītamakaranda
20. Skandapurāṇa
21. Harivaṁśa

4.2.5 Corrected Quotations
Below is the list of the quotations for which we provide the corrected source.

1. Commenting on the word maunam in s1.v22, Mallinātha states, ya;Ta;a;h k+:a;ma;nd;kH ‘na;a;nya;ea;pa;ta;a;
a;pa
va;.ca;nMa ma;Ea;nMa v.ra;ta;.ca;�a:=+S¾ua;ta;a’ I+.�a;ta Á The cited verse line does not occur in the Kāmandakanītisāra but
is found in the Agnipurāṇa (239.22).

2. At the end of his commentary on s1.v85, Mallinātha quotes the verse,
º;a;çÉîå+;ae ;yMa Ba;sma;na;a .=+:ïîåéa;a;na;ma;va;ga;a;hùÅ:aM tua va;a:�+:¾a;m,a Á
º;a;pa;ea;
a;h;�e +�a;ta ..ca b.ra;a;�M va;a;ya;v.yMa ga;ea:=;jaH .smxa;ta;m,a Á Á

and claims that this verse occurs in the Manusmr�ti (o+.�M ..ca ma;nua;na;a). The verse does not occur
in the Manusmr�ti but is found in the Skandapurāṇa.

3. Similarly, commenting on s2.v75 Mallinātha states,
‘ya;Tea;yMa :pxa;�a;Ta;v�a;a ma;hùÅ:au :�a;a;na;a ga;BRa;ma;a;d;Dea Á
O;;vMa tvMa ga;BRa;ma;a;Dea;
a;h d;Za;mea ma;a;�a;sa .sUa;ta;vea Á Á’
I+.tya;a:(õ;a;l+.a;ya;na;a;na;Ma .s�a;a;ma;nta;ma:n:�ea .~:��a;a;v.ya;a;pa;a:=+Da;a:=+¾a º;a;Da;a;na;Za;b.d;pra;ya;ea;ga;d;ZRa;na;a;
a;d;�a;ta Á

64

The verse does not occur in the Āśvalāyanagr�hyasūtra but is actually found in the Māna-
vagr�hyasūtra.

4.2.6 Unidentified Quotations
Below is the list of the many unidentified quotations in the first three cantos.

1. º;a;yua;�+:ke +:Bya;(ãÉa;Ea;=e +ByaH :pa:=e +Bya;ea .=+a:ja;va;�+:Ba;a;t,a Á :pxa;�a;Ta;v�a;a;pa;�a;ta;l+.ea;Ba;a:úãÁ*.a na:=+a;¾a;Ma :pa:úãÁ*.a;Da;a ma;ta;m,a Á Á (s1.v60)
2. ³;¾Ma :de ;va;~ya ya;a;gea;na ³;S�a;a;¾a;Ma d;a;na;k+:mRa;¾a;a Á .sMa;ta;tya;a ;
a;pa;txa;l+.ea;k+:a;na;Ma Za;ea;Da;�a;ya;tva;a :pa;�a:=+v.ra:jea;t,a Á Á (s1.v71)
3. k+:a;mMa ;
a;pa;ta:=M :pra;ea;
a;Sa;ta;va;ntMa :pua:�a;aH :pra;tya;a;Da;a;va;�////�a;nta O;;va;mea;ta (O;;va;m,a h ;vEa;ta-) ma;çÉîå+;a;yaH :pra;tya;a;Da;a;va;�////�a;nta .sa;Za;k+:l+.a;nd;a:�+.�a;na-
;va;a;h:=+n,a (s1.v49)

4. ..ca;tua;TeRaY;na;va;l+.ea;Ba;na;m,a I+.tya;a:(õ;a;l+.a;ya;naH Á (s3.v10.w6)
5. ;�a;C+.ndùÅ;a;a;dõâ â ;a;hu ;ma;
a;pa du ;�;ma;a;tma;naH (s1.v28)
6. ;
a:�Ma;Za;;�ÂåÅ +a;ga;a;tma;kM l+.çÉîå+;a;m,a (s3.v13)
7. na;a;sa;a;k+:¾F+.mua:=+~ta;a;lu +.�a:ja;�ë+:a;d;nta;Ma;(ãÉa .sMa;~å.pxa;Za;n,a Á :Sa:*ñÂÙùÁ+:aH .sMa:ja;a;ya;tea ya;sma;a:�a;sma;a;tSa:ñêÅÅ* I+.�a;ta .smxa;taH (s1.v39)
8. ;�a;na;va;Ra;¾a;ea;tTa;a;na;Za;ya;na;a;�a;na ��a;a;a;¾a ga:ja;k+:ma;Ra;a;¾a (s1.v71)
9. :pxa;�a;Ta;v�a;a .sa;�a;l+.lM .tea:ja;ea va;a;yua:=+a;k+:a;Za;mea;va ..ca Á .sUa;ya;Ra;.ca;ndÒ +ma;sa;Ea .sa;ea;ma;ya;a:j�a;a ..cea;tya;�;mUa;tRa;yaH Á Á (s2.v35)

10. :pra;�a;ta;pa;a;dùÅ;a;ma;
a;h;}îå:a;a ..ca :pra;ba;nDa;ea ;
a;h ma;h:�a:=H (s1.v2)
11. :pra;ea;Sya;a;ga;.cC+.ta;a;ma;a;
a;h;ta;a;çÉîå+;a� ;a;na;a;ma;çÉîå+;a;yaH :pra;tyua;dùÅ;a;a;�////�a;nta (s1.v49)
12. ma;Ma;sa;l+.(ãÉa (s3.v34.w3)
13. mxa;dM ga;Ma ;dE ;va;tMa ;
a;va;prMa ;Gxa;tMa ma;Dua ..ca;tua;Spa;Ta;m,a Á :pra;d;a:»a;¾a;a;�a;na ku +:v�a;Ra;ta ;
a;va;¼a;a;ta;Ma;(ãÉa va;na;~å.pa;t�a;a;n,a Á Á (s1.v76.w6)
14. .=+
a;va;¾a;a;~ta;ma;ya;ea ya;ea;ga;ea ;
a;va;ya;ea;ga;~tUa;d;ya;ea Ba;vea;t,a (s3.v13)
15. .=+a:ja;a tva;Ta;Ra;nsa;ma;a;&+.tya ku +:ya;Ra;
a;d;ndÒ +ma;h;ea;tsa;va;m,a Á :pr�a;a;a;¾a;ta;ea mea;Ga;va;a;h;~tua ma;h;t�a;Ma vxa;
a;�;ma;a;va;he ;t,a Á Á (s1.v26)
16. ;
a;va;Sa;a;d;(ãÉea;ta;sa;ea Ba;ñÍç ÅÅ*: o+.pa;a;ya;a;Ba;a;va;na;a;Za;ya;eaH (s.v40.w1)
17. Za;�+:a;na;Ma BUa;Sa;¾Ma »a;ma;a (s1.v22.w3)
18. Zua;Ba;d;ea ma;ea BUa;�a;ma;ma;yaH (s1.v1)
19. .sa Ka;lu :pua:�a;a;�a;TRa;�a;Ba:�+:pa;a;~ya;tea (s1.v35.w2)
20. .sa;�a;ma:;dÄâ e Y;çÉîå+;a;a;va;a;hu ;t�a;a:jRua;h;ea;�a;ta (s1.v53.w1)

Usually Mallinātha cites these passages with a vague reference to their source such as iti vaca-
nāt or iti smr�teḥ. Yet in a couple of instances, he attributes the quotation to a particular author.
However these do not occur in the texts by those authors. On s1.v22, Mallinātha claims that the
verse Za;�+:a;na;Ma BUa;Sa;¾Ma »a;ma;a is by Cāṇakya. However we did not find it in the Cāṇakyanīti. Similarly
the quote ;�a;na;va;Ra;¾a;ea;tTa;a;na;Za;ya;na;a;�a;na ��a;a;a;¾a ga:ja;k+:ma;Ra;a;¾a (s1.v71) is claimed to be by Pālakāpya, but we did
not find it in his Gajacikitsā. Lastly ma;Ma;sa;l+.(ãÉa (s3.v34.w3) is claimed to be by a vr�ttikāra. We
did not find it in the Kāśikāvr�tti and do not know to which vr�ttikāra he refers. Since these have
not been located in the presumed texts, we label them as well unidentified.

5 Conclusion
In the present project of making a TEI digital edition of Mallinātha’s commentary Sañjīvanī on
Kālidāsa’s Raghuvaṁśa, we encountered material that called for expansion of the procedures for
creating XML editions of Sanskrit texts containing commentaries in accordance with the Text
Encoding Initiative (TEI) guidelines. To accommodate this material we created the following
additional values of the seg element’s type attribute: (1) alternate, (2) def, (3) paraphrase,
(4) syntax, and (5) constituent. The first three expand the categorization of glosses. Where
previously all glosses were categorized as synonyms, we now distinguish optional morphological
forms, semantic explanations, and paraphrases from synonyms by the following values of the
seg element’s type attribute respectively: alternate, def, and paraphrase. Item (4) adds
a refinement of the derivation category to distinguish an explicit grammatical comment rele-
vant to construing syntactic relations from derivational material exclusively concerned with the
morphology and semantics of the word. Item (5) allows one to relate comments regarding a
compound constituent separated from the compound paraphrase to the compound constituent
in the padapāṭha file.

65

In the present project, we also contributed substantially to the constitution and analysis of the
text. We verified and corrected the sources of citations, and listed those that remain unidentified,
added reference to the NCC for non-extant works, and added sources of citations where Ma-
llinātha doesn’t reveal them. The process of undertaking the higher-level encoding of a text
reveals hidden textual problems with Sanskrit texts. The process of analyzing a commentary
and precisely categorizing extents of it forces one to notice lacunae in prior work on the text
which in turn gives one the opportunity to make significant philological contributions. The
contemporary shift of the principal medium of knowledge transmission from the printed word
to the digital medium is transforming philology into digital philology which is the future form
of textual research.

6 Acknowledgements
We would like to thank the Center of Policy Research and Governance (CPRG) Indian Knowl-
edge Systems (IKS) for providing a Research Grant to Ketaki Kaduskar to participate in this
project. We also thank Maithili Kulkarni, Somaiyya Institute of Dharma Studies, Mumbai, who
helped to verify lexical resources.

References
Ajotikar, Tanuja P. and Peter M. Scharf (2023). “Development of a TEI standard for digital

Sanskrit texts containing commentaries: A pilot study of bhaṭṭi’s Rāvaṇavadha with Malli-
nātha’s commentary on the first canto”. In: Proceedings of the Computational Sanskrit &
Digital Humanities: Selected papers presented at the 18th World Sanskrit Conference. Ed.
by Amba Kulkarni and Oliver Hellwig. Canberra, Australia (Online mode): Association for
Computational Linguistics, pp. 128–145. url: https : / / aclanthology . org / 2023 . wsc -
csdh.9.

Dash, Siniruddha, ed. (2015). New Catalogus Catalogorum. An alphabetical register of Sanskrit
and allied works and authors saṁyamanśreṇivicāra–samasyāhomaprayoga. Madras: University
of Madras.

Kale, Moreshvara Ramachandra (1922). The Raghuvaṁśa of Kālidāsa. with the commentary the
Sañjı̄vanı̄ of Mallinātha Canto 1–10 edited with a literal translation into English, copious notes
in Sanskrit and English and various readings. Bombay: Gopal Narayan and co. Third revised
edition.

Nandargikar, Gopal Raghunath (1982). The Raghuvaṁśa of Kālidāsa. Delhi: Motilal Banarasi-
das. Fifth edition.

Pandit, Shankar P. (1874). The Raghuvaṁśa of Kālidāsa. with the commentary the Sañjı̄vanı̄
of Mallinātha edited with notes, part III, cantos 14–19. Bombay: Government central book
depot.

Parab, Kashinath Pandurang, ed. (1941). Śrı̄dhanañjayaviracitaṁ Daśarūpakam. Dhanikakr�ta-
yāvalokayā vyākhyayā bhāratı̄yanāṭyaśāstragatadaśanirūpaṇena ca sametam. Mumbai: Ninr-
naysagar Press.

Raghavan, V. (1967). New Catalogus Catalogorum. An alphabetical register of Sanskrit and allied
works and authors. Ed. by Raja C. Kuhnan. Madras University Sanskrit Series 18. Madras:
University of Madras.

Ramanathan, A. A. (1978). Amarakośa. with the commentary the unpublished south indian
commentaries Amaapadavivr�ti of Liṅgayasūrin Amaapadapārijāta of Mallinātha Amaapada-
vivaraṇa of Appayārya critically edited with introduction. Madras: The Adyar library and
research centre.

Ramnikvijay, Pannyas, ed. (2019). Ekākṣaraśabdamālā. Ahmedabad: Śrutajñāna saṁskārapı̄ṭha.

66

Inter Sentential Discourse Relations

Saee Vaze
Department of Sanskrit Studies,

University of Hyderabad
20hsph03@uohyd.ac.in

Amba Kulkarni
Department of Sanskrit Studies,

University of Hyderabad
ambakulkarni@uohyd.ac.in

Abstract

In this paper, we present a tagging scheme for inter-sentential discourse relations that
is developed, based on the insights from Indian Grammatical Tradition. We rely on the
three factors - ākāṅkṣā, yogyatā and sannidhi to decide the connectivity between two
consecutive sentences. Various clues are identified that bind the two consecutive sen-
tences. A tag set is presented based on the explicit discourse markers. Implementation
of discourse level analysis based on the explicit discourse markers is tested on the Śri-
madbhagvadgītā corpus. It is observed that some discourse markers are ambiguous and
it is not trivial to develop a disambiguation module for such markers.

1 Introduction
The term discourse analysis has gained a lot of attention in the recent past. It typically refers
to a linguistic unit that goes beyond a sentence.1 Thus, the discourse analysis goes beyond the
scope of sentence boundaries and looks at the text as a unit of language. In understanding the
meaning of a discourse, both the linguistic and non-linguistic factors contribute. The linguistic
factors include coherence markers while non-linguistic background includes, speaker-listener
dynamics, situationality etc. In Natural Language Processing, the core interest is in producing
computer-processable models of discourse at different levels such as sentence, paragraph, text,
etc. Varied work has been done on the topic already on different levels and languages.

From the theoretical point of view the work by Indologists and Sanskrit scholars in the field
of discourse analysis is very rich and valuable. Scharf and Hock (2015) provides an exhaustive
bibliography of works in the field of general discourse and formal syntax. However, there is very
little work from the perspective of computational linguistics with regards to Sanskrit language.
There are several efforts in the West especially in the field of computational linguistics.
Treatment of cohesion by Halliday and Hasan (1976) attempts to look at the text as a linguistic
phenomenon. Rhetorical Structure Theory (RST) (Mann and Thompson, 1988) was the first
effort towards establishing the discourse structure in the form of a graph, by connecting two
adjacent units by a discourse relation. Another seminal effort was made by the team lead by
Arvind Joshi in the project Penn Discourse Tree-Bank (Prasad et al., 2006) which focuses on
the structure of arguments and how a connective enables a certain discourse relation, implicit
or explicit. The discourse tree-banks were created from a huge data from Wall Street Journal
(Mann and Thompson, 1988) following the RST framework. The other discourse databanks
include Linguistic Discourse Model (Polanyi, 2008), and the Discourse Graphbank (Wolf and
Gibson, 2005). The Discourse-Lexicalized Tree Adjoining Grammar (Webber and Joshi, 1998)
was developed following the Penn Discourse Treebank guidelines. With the emergence of such
computational guidelines and resources for several languages discourse tagged datasets were
developed for languages other than English such as Czech (Mladová et al., 2008), Chinese
(Jiang et al., 2018) and Turkish (Zeyrek et al., 2010) to name a few. Similar efforts were made

1https://www.merriam-webster.com/dictionary/discourse

67

for some Indian Languages resulting in Hindi Discourse Relation Bank (Umangi et al., 2009),
Bangla RST Discourse Treebank (Das and Stede, 2018), Annotated Tamil Corpus (Rachakonda
and Sharma, 2011), Annotations of Connectives and Arguments in Malayalam (Kumari and
Devi, 2016) etc.

Regarding Sanskrit, in the recent past Kulkarni and Das (2012) presented a brief summary
of the various sets of discourse relations found in the Indian grammatical tradition(IGT). They
have also shown the usefulness of these relations by developing a Finite State Automaton to
tag the texts in Mahābhāṣya following the cues available. Recently Terdalkar and Bhattacharya
(2019) developed a Question Answering system for special domains. Apart from these there is
not much work in the area of discourse analysis in Sanskrit.

In what follows we brief our approach to discourse analysis in Sanskrit following IGT followed
by a review of earlier work on Discourse analysis in Sanskrit. In Section 3 we present various
clues that mark the ākāṅkṣā between the two consecutive sentences. We identify the explicit
discourse markers in Sanskrit that connect two consecutive sentences. This is followed by a
discussion on the implementation, challenges and evaluation.

2 Discourse Analysis in Sanskrit

The computational models such as RST and Penn Discourse may be tried for Sanskrit as well.
However there are three considerations why we decided to follow the IGT. The first and foremost
concerns with the rich linguistic tradition of India. The theories of śābdabodha that deal with the
process of understanding texts are almost as old or albeit a little older than Pāṇini’s grammar.
Jaimini in his composition of Mīmāṁsāsūtra not only provided his interpretations of the vedas,
but also provided a glimpse of what principles he followed in interpreting the texts. Further
Śabara elaborates these principles including the ones which Jaimini merely indicated. The seeds
sown by these Māmāṁsakas further grew into various guidelines to decide the coherence between
the textual segments. The Naiyāyikas and the Vaiyākaraṇas also followed the Mīmāṁsakas
resulting into various sets of coherence relations proposed by them for describing the coherence
between the various segments of the texts. These relations cover a wide range of units starting
from the sentences to paragraphs to chapters to texts to discipline. Depending on the style
of the texts, and the type of unit the text belongs to, different annotation schemes were pro-
posed by different schools. A detailed description of this is available in Kulkarni and Das (2012).

The second consideration is that these discourse relations are also used by the commentators
while commenting upon important texts, or editors who used them as subtitles providing some
hints towards understanding the cohesion, and sources for coherence markers. For example the
Nirṇaya-sāgara edition of the Mahābhāṣya has subtitles which show the logical structure of the
discourse.

The third consideration is the following. Mīmāṁsakas discuss three factors viz. ākāṅkṣā,
yogyatā and sannidhi as important factors for the verbal cognition. These factors play an
important role throughout the process of verbal cognition - not limited just to the sentential
analysis - but extending to the understanding of the complete text. Thus these three factors
can be considered to be guidelines for identifying the clues and connecting the segments of the
texts accordingly. Having developed a sentential parser (Kulkarni, 2019) based on the theories
of śābdabodha, where all these factors were used for sentential analysis, it gave us a confidence
that these factors can be further extended for discourse analysis as well.

Hence we decided to base our approach to discourse analysis following the IGT.

68

2.1 Earlier work and its limitations
The relations in the tag-set proposed by Krishnamacharyulu (2009) contain inter-sentential
relations as well. These inter-sentential relations are marked by some connectives which are
indeclinables. Some of these connectives occur in pairs. Kulkarni and Das (2012) had proposed
a tagging scheme for them. Each of these connectives takes two arguments. Following logi-
cians convention, these arguments are named by the general terms anuyogika2 (combining) and
pratiyogī (having a counter part). So, if C is the connective connecting two sentences S1 and S2
then the general structure is represented as in Figure 1.

Figure 1: Discourse structure with single connective

When there are two parallel connectives C1 and C2 connecting S1 and S2 then the relation
between them is represented as in Figure 2.

Figure 2: Discourse structure with paired connectives

Here R binds C1 and C2. The relation of the connectives with the sentence is through
the main verbs. The sentences are further parsed as dependency trees. In case of paired
connectives, the usage allows using either of them or both of them in a sentence. When only
one of them is used in a sentence then the structure in Figure 2 collapses to Figure 1.

There were two problems with this work. The first one was related to the names of the
relations. The two terms anuyogika and pratiyogī are very general that they do not convey
the semantics of the relation between the two sentences. Secondly, we also noticed that there
were several other indeclinables which the authors had missed. So in the next section, we look
at the relations between two consecutive sentences, marked by explicit markers, and provide a
semantic interpretation of that relationship. We also enlist all possible indeclinables that can
mark the relations between the consecutive sentences.

3 Inter-Sentential Discourse Relations
The inter-sentential relations are identified with the help of ākāṅkṣā, yogyatā and sannidhi.
Sometimes the fourth factor tātparya is also considered to an essential factor in the process of
śābdabodha. This factor is more relevant from the word sense disambiguation point of view,
and also for choosing the level of signification of the word. Hence we focus only on the first
three factors. We define the basic elementary units between which we establish the relations.
Then we look at the clues that guide us in proposing a relation. Then comes the mutual
compatibility between the elementary units which confirms the proposed relation. We assume
that the elementary units are consecutive ones, ensuring that the third factor sannidhi is taken
care of.

2S2 is the anuyogi. So if the arrowhead is pointing towards S2 the name of the relation would have been
anuyogi. In this diagram, the arrowhead is pointing towards C, and hence the name of the relation is inverse of
anuyogi, i.e. anuyogika.

69

3.1 Elementary Unit
Elementary Unit refers to the basic elements between which the relation is to marked. We take
vākya (sentence) as a unit, where vākya is defined as ‘eka tiṅ vākyam’. That is a group of related
words with one finite verbal form is termed as a sentence. Further, participles, especially those
with kta, ktavatu and the kṛtya suffixes such as anīyar etc. are typically used as if they are finite
verbs (Speijer, 1886) (in section 9). Hence group of related words with such forms, without any
finite verbal form, are also considered to be a sentence. (Others not specially mentioned in the
list of sentences with non-finite exception, such as satī-saptamī, tumun etc. would be considered
as a single unit and would not fall under the domain of inter-sentential discourse relations.)

With this definition, the following group of words

prātaḥkāle rāmaḥ śālāṁ gacchati. tatra pāṭhaṁ paṭhati. krīḍati ca. sāyaṁkāle gṛhaṁ āgacchati.

consists of four sentences, as delimited with the full stops. Now consider the following sentence:

Sanskrit : yadi tvam icchasi tarhi ahaṁ tava gṛhaṁ āgacchāmi iti rāmaḥ śāmaṁ vadati.
Gloss : if you wish{2p,sg,pres}, then I your house{loc} come{1p,sg,fut} so Rama{nom}
Shyama{acc} say{3p,sg,pres}
Eng: “If you wish I will come to your house” says Rama to Shyama.

Following the definition of eka-tiṅ vākyam,̇ here there are three sentences viz.

1. tvam icchasi,

2. ahaṁ tava gṛhaṁ āgacchāmi, and

3. rāmaḥ śyāmaṁ vadati.

connected by three connectives yadi, tarhi and iti. The words yadi and tarhi are the pair con-
nectives, and both these connectives have an expectancy of two sentences. The third connector
iti is a marker for the karman (vākya-karma-dyotakaḥ) which is in sentential form. Thus now
the complex sentence formed by joining the two sentences with the pair of connectives yadi-tarhi
acts as a karma for the verb vad.

3.2 Ākāṁkṣā
Literally ākāṅkṣā is the desire on the part of a listener to know (jñātum icchā). In the case of
understanding a sentence, the desire is to know how the words in a sentence are connected to
each other producing a unified meaning. This ākāṁkṣā is expressed in language through various
means. As is mentioned in Kulkarni (2019), there are different linguistic clues that mark the
expectancies in a sentence, such as

• suffix, as in the case of ‘vanaṁ gacchati’, [forest{nom} go{3p,sg,pres}] the suffix ‘am’ marks
the karmatva and thus has an expectancy of a transitive verb to connect with,

• position, as in the case of a sentence starting with the word ‘api’, there is an expectancy of
a sentence such as ‘tvam gacchasi’,[you{nom} go{3p,sg,pres}] so that complete expression
expresses a question,

• indeclinables such as ‘na’ which have an expectancy of a verbal form to connect to, and
finally

• the underlying verbal root in a verbal form has an expectancy for various kārakas.

70

Similarly the sentence level connections are expressed through various means such as inde-
clinables, relative position of sentences, semantics associated with the verbal roots, and so on.

• The indeclinables such as yadi, tarhi, yataḥ, tataḥ, atha, yathā-tathā, yadyapi, etc. provide
a cue that the consecutive sentences (or group of sentences) are related. For example, the
two sentences

Sanskrit: rāmaḥ paṭhati. tathāpi parīkṣāyām uttīrṇaḥ na bhavati.
Gloss: Rama{nom} study{3p,sg,pres} then exam{loc} pass{nom} neg be{3p,sg,pres}
English: Rama studies. (Even) then he does not pass the exam.

are connected to each other showing the failure to get the desired results even after per-
forming the necessary task.

• The relative position of the sentences in a conservation also provides us a clue about the
temporal sequence between the events associated with the verbal forms.

Sanskrit: rāmaḥ prātaḥkāle uttiṣhati. snānam karoti. dugham pītvā śālām gacchati.
Gloss: Rama{nom} morning{loc} wake{3p,sg,pres}. Bath{acc} do{3p,sg,pres}.
Milk{nom} drink{geund} school{acc} go{3p,sg,pres}
English: Rama wakes up in the morning. Takes a bath. Goes to school, after drinking
milk.

Here we notice that there is a temporal sequence, and thus the order in which the activities
happened is marked in the position of these sentences. There is no lexical unit which marks
such relation.

• The use of pronouns connect the sentences when the anaphora resolution is made.

Sanskrit: rāmaḥ śālām gacchati. saḥ tatra pāṭham paṭhati.
Gloss: Rama{nom} school{acc} go{3p,sg,pres}. He{nom} there lesson{acc}
study{3p,sg,pres}
English: Rama goes to school. There he studies a lesson.
Here the use of the pronoun ‘saḥ’ for Rāma by the speaker, needs to be resolved by the
listener. Only then the listener can understand the conversation.

• The semantics associated with verbs also raise certain expectancies. For example look at
the two ślokas the first one and the seventh one from Saṅkṣepa-rāmāyaṇam. The first one
viz.
tapassvādhyāyaniratam tapasvī vāgvidām varam
nāradam paripapraccha vālmīkirmunipuṅgavam

has the verbal form paripapraccha(asked) which has an expectancy of an answer. This
expectancy is fulfilled by the verbal form abravīt (said) from the seventh śloka, viz.

... śrūyatām iti āmantrya prahṛṣṭaḥ vākyam abravīt.

In this paper we focus only on the lexical units that express the sentential expectancies.

71

3.3 Yogyatā
Some indeclinables such as ‘atha’, can be used to denote conjunction as well as succeeding
action. Similarly words such as yasmāt-tasmāt or yena-tena can represent the kāraka relations
such as apādāna or instrument, alternately these words may also denote a hetuḥ - a cause-effect
relation. In order to decide the appropriate role in the context, we need to look at the context
- both linguistic as well as non-linguistic, identify the linguistic and ontological factors that
can help in the disambiguation, and so on. We look at one particle ‘hi’ (See Sec 5.1) which is
ambiguous between a causal marker and a definiteness marker, and show how difficult it is to
address the problem of ambiguity.

4 Discourse Relation tagging and clues
Below we present the list of discourse markers we have come across so far (and also implemented),
along with the relation(s) they express and the tagging with an example sentence.

Relation Markers
Succeeding (anantarakālaḥ) tataḥ, anantara, atha
Simultaneity (samānakālaḥ) yadā-tadā
Co-location (samānādhikaraṇaḥ) yatra-tatra
Similarity (sādṛśyam) yathā-tathā
Cause-Effect (kārya-kāraṇam) yataḥ-tataḥ, ataḥ, yasmāt, tasṃāt, yena, tena, hi
Possiblity (āvaśyakatā-pariṇāmaḥ) yadi-tarhi, iti, cet
Hindrance in cause-effect (vyabhicāraḥ) yadyapi-tathapi, cedapi, athāpi, tarhyapi
Antithesis (virodhaḥ) parantu, kintu
Conjunction (samucccayaḥ) ca, api, cāpi, athaca, athāpi, evañca
Disjunction (anyataraḥ) vā, uta, yadvā, athavā, utāpi, utasvit

Table 1: List of discourse relations and markers

1. Succeeding (anantarakālaḥ) :
Here the relation of succeding activity to the preceeding is marked. The presence of
indeclinables such as atha, tataḥ, etc. trigger the relation of the current sentence with the
previous one. The activity denoted by the current sentence is marked as the succeding
activity for the activity denoted by the previous sentence. See Figure 3.

Sanskrit : ahaṃ śṛṇomi atha likhāmi.
Gloss : I{nom} listen {3p,sg,pres} then write{3p,sg,pres}
English : I listen, then I write.

Before moving to the next relation, we highlight the salient features of the discourse graph
representation.

• The relations between two sentences is through a link between the head (mukhya
viśeṣya) of the two sentences.

• The arrow head is with the node that satisfies the property named by the edge label.
• The direction of the arrow, unlike in dependency trees, does not denote the dependency,

or the head and the sub-ordinate.
• In order to distinguish the discourse relations from the intra-sentential relations, dis-

course relations are marked with double line.
Thus in Figure 3 the verbs from the two sentences viz. śṛṇomi and likhāmi are related by
the relation of anantarakālaḥ, and the marker for this relation is the word atha.

72

Figure 3: anantarakālaḥ relation

2. Simultaneity (samānakālaḥ) :
In Sanskrit, there are two ways of expressing the simultaneity. One is the use of present
participles (kṛt suffixes - śatṛ and śānac) which are part of intra-sentential relations. The
second is the use of indeclinable pair yadā-tadā. In this case, the verbs in finite form from
both the sentences are connected with a relation samānakālaḥ. The words yadā and tadā
mark a relation of kālādhikaraṇam (time locative) (See Figure 4).
Here is an example:

Sanskrit : yadā bharataḥ mārge gacchati tadā saḥ devālayam paśyati.
Gloss: when Bharata{nom} path{loc} go{3p,sg,pres} then he{nom} temple{acc}
see{3p,sg,pres}
English : On his way Bharata sees a temple.

Figure 4: samānakālaḥ relation

3. Co-location (samānādhikaraṇaḥ) :
This relation indicates that the activities indicated by the two consecutive sentences are
performed at the same location. This relation is marked by the pair of indeclinables
yatra-tatra. The consecutive sentences use these two words denoting the deśādhikaraṇam
(place locative), or only one of them is used in one sentence (See Figure 5).

Sanskrit : yatra nāryaḥ tu pūjyante tatra devatāḥ ramante.
Gloss : where women{nom} emph_marker worship{3p,pl,pres} there Gods{nom} re-
side{3p,pl,pres}

73

English : Where women are worshiped there reside the Gods.

Figure 5: samānādhikaraṇaḥ relation

4. Similarity (sādṛśyam) :
This relation is of similarity. The similarity is between the two activities expressed through
two consecutive sentences (See Figure 6). The example is :

Sanskrit : janāni karmāṇi yathā kurvanti tathā te phalam prāpnuvanti.
Gloss : people{nom} deeds{acc} as do{3p,pl,pres} so they{nom} fruit{acc}
reap{3p,pl,pres}
English: People reap the fruits as per their deeds.

Figure 6: sādṛśyam relation

5. Cause-Effect (kārya-kāraṇa) :
When there is certainty about the cause, or the event expressing the cause has already taken
place or there is a certainty that a certain event expressing the cause is going to happen,
to express the certainty of the result following the cause, such constructions are used. This
is a dichotomous relation where the sentence expressing the cause is marked with yataḥ
indicating the reason/cause (kāraṇa-dyotakaḥ) and the sentence expressing the result is
marked with the connective tataḥ which is an indicator of the result (kārya-dyotakaḥ).
It is possible that only one connective among the two is used. Still it gives the same

74

meaning viz. cause-effect relation (See Figure 7). An example of this type of construction is:

Sanskrit : yataḥ avarṣat tataḥ mayūraḥ nṛtyati.
Gloss : because rain{3p,sg,pp} therefore peacock{nom} dance{3p,sg,pres}
English : Because it has rained, (therefore) peacock is dancing.

Figure 7: kārya-kāraṇa relation

6. Conditional (āvaśyakatā-pariṇāma) :
In slight contrast with the previous one, there are conditional sentences where there is
no certainty of the event indicating the cause. To indicate the possibility of the resulting
event provided the event corresponding to the cause takes place, such constructions are
used. These sentences are marked with āvaśyakatā-pariṇāma-sambandhaḥ, which is a
dichotomous relation where, the marker yadi indicates the necessity (āvaśyakatā-dyotakaḥ)
and the marker tarhi indicates the result (pariṇāma-dyotakaḥ). The markers are used
either in pair or individually as well (See Figure 8). An example of this type is:

Sanksrit : yadi paṭhasi tarhi uttīrṇaḥ bhaviṣyasi.
Gloss : if read{2p,sg,pres} then pass{nom} be{2p,sg,fut}
English : If you study (then) you will pass.

Figure 8: āvaśyakatā-pariṇāma relation

7. Anomaly (vyabhicāra) :
This is an exception or violation in naturally occurring cause-effect relationship. The pair
of words yadyapi (even though) and tathāpi (even then) are the markers that trigger such

75

relations. We mark vyabhicāra-sambandhaḥ between the two finite verbs indicating the
actions. The marker yadyapi is tagged as kāraṇa dyotakaḥ and tathāpi as kārya dyotakaḥ.
The exceptions may be of two types. In one case even though the cause is present, the
expected result is absent, and in the second case the result is present even though the
desired cause is missing, thus violating the concomitance between the cause and effect (See
Figures 10 and 9). The two types of examples are:

Sanskrit : yadyapi varṣā bhavati tathāpi mayūraḥ na nṛtyati.
Gloss: even-if rain{3p,sg,pres} happen even-then peacock{nom} neg dance{3p,sg,pres}
English: Even if it rains, even-then peacock does not dance.

Figure 9: vyabhicāra relation type 1

Sanskrit: yadyapi saḥ vaidyaḥ na asti tathāpi saḥ cikītsāṃ jānāti.
Gloss: Even-if he{nom} doctor{nom} neg be{3p,sg,pres} even-then he{nom} cure{acc}
know{3p,sg,pres}
Eng: Even if he is not the doctor, even-then he knows the cure.

Figure 10: vyabhicāra relation type 2

8. Antithesis (virodhaḥ) :
Antithesis shows contradiction or opposition. It is typically marked by particles such as
parantu and kintu (See Figure : 11). For example :

Sanskrit : gajendraḥ tīvram prayatnam akarot parantu nakra-grahāt na muktaḥ.
Gloss : Elephant{nom} hard effort{acc} do{3p,sg,past} but crocodile-grip{abl} no
free{1p,sg,ppp}

76

English : Elephant tried hard but couldn’t escape from the crocodile-grip.

Figure 11: virodhaḥ relation

9. Conjunction (samuccayaḥ):
The conjuncts conjoined by the conjunctions are marked by this relation (See Fig 12). The
example is :

Sanskrit : Bhikṣām aṭa api ca gāṃ ānaya.
Gloss : alms{dat} roam{2p,sg,imp} also and cow{acc} bring{2p,sg,imp}
English : Roam around for alms and bring the cow.

Figure 12: samuccayaḥ relation

The detailed discussion on the representatoon of conjuncts with various categories from
computational point of view is presented in (Kulkarni and Panchal, 2019).

10. Disjunction (anyataraḥ) :
The disjuncts conjoined with disjunctive markers are marked by this relation (See Fig 13).
The Example is :

Sanskrit : sītā śvaḥ kāryakrame gāsyati athavā nartsyati.
Gloss : Sita{nom} tomorrow program{loc} sing{3p,sg,fut} or dance{3p,sg,fut}

77

English : Sita will sing in tomorrow’s program or will dance.

Figure 13: anyataraḥ relation

5 Implementation, Challenges and Evaluation

We selected ŚrimadBhagvadGītā(SBG) as a corpus for testing. There are 700 verses where
each verse may consist of more than one sentence or more than one verse may consitute
one sentence. The criterion for deciding the boundary of a sentence is ‘eka ṭiṇ vākyam’3
and ‘sākāṇkṣam cet vibhāge syāt’.4 Thus any group of words having one and only one finite
verb and where every word is related to at least one other word from the group is termed
as a sentence. Detecting sentence boundary has been earlier addressed by Hellwig (2016).
It has been observed that a considerable number of errors are produced by the sentence
boundary algorithm when sentences are smaller in length and especially without the use of
copula. Since we were interested in the performance of the inter-sentential discourse analyser,
to avoid cascading effect on the errors, we decided to manually annotate the sentence boundaries.

All the sentences having the inter-sentential markers were extracted from SBG. The dis-
tribution of various markers and the relations they mark is shown in Table 2. In the case
of unambiguous markers, it was trivial to mark the relations automatically. The ambiguous
markers fall under two categories. The first one has pronouns that are ambiguous due to the
ambiguity of the case markers such as ablative and instrumental case suffixes which can mark
a kāraka relation such as apādānam or karaṇam and a non-kāraka relation like hetuḥ. In this
case unless the pronoun reference is identified, it is difficult to decide what relation is marks.
The second category has ambiguous indeclinables such as hi and atha. In order to understand
the problems in disambiguation, as a case study we looked at all the instances of hi in SBG.
We describe below our observations.

5.1 Disambiguation of ‘hi’
The Sankrit-Hindi Apte’s dictionary has the following four different senses of the word hi.

1. isaliye ki, kyoṁki

2. nissandeha, niścaya hi

3. udāharaṇasvarupa
3a group of words with one finite verb is a sentence.
4When a group of words is split into two parts and a word from one group has an expectancy for the word

from the other group, all the words together from one sentence.

78

Markers Relation Frequency
tasmāt kārya-kāraṇa-sambandhaḥ 21
tasmāt apādānam 2
yasmāt kārya-kāraṇa-sambandhaḥ 1
yasmāt apādānam 1
tataḥ kārya-kāraṇa-sambandhaḥ 8
tataḥ apādānam 8
tataḥ anantarakālaḥ 7
yataḥ kārya-kāraṇa-sambandhaḥ 2
yataḥ apādānam 2
ataḥ kārya-kāraṇa-sambandhaḥ 2
ataḥ apādānam 2
tena karaṇam 7
yena karaṇam 8
hi kārya-kāraṇa-sambandhaḥ 49
hi sambandhaḥ 17
tadā samānakālaḥ 12
yadā samānakālaḥ 11
tatra deśādhikaraṇam 13
yatra samānādhikaraṇaḥ 5
tathā sādṛśyam 13
tathā kriyāviśeṣaṇām 8
yathā sādṛśyam 13
yathā kriyāviśeṣaṇām 4
yadi āvaśyakatā-pariṇāmaḥ 4
cet āvaśyakatā-pariṇāmaḥ 6
ṭathāpi vyabhicāraḥ 1
yadyapi vyabhicāraḥ 1
anantaram anantarakālaḥ 2
atha anantarakālaḥ 1
atha samuccayaḥ 4
atha praśnārthaḥ 5
ca samuccayaḥ 49
api praśnārthaḥ 1
api sambandhaḥ 52
vā anyataraḥ 6
vā praśnārthaḥ 1
athavā anyataraḥ 2

Table 2: List of discourse relations and frequency occured in Śrimadbhagvadgītā

79

4. kevala, akelā

The Sanskrit-English Monnier William’s dictionary has the following 3 different senses.

1. for, because, on account of

2. just, pray, do

3. indeed, assuredly, surely, of course, certainly

Speijer (1886) (§429) while commenting on it observes “hi was at the outset an emphatic, a
weak ‘indeed’, but generally it is a causal particle, at least in prose.”. Further in §443 Speijer
states “... it has rather a general employment when annexing sentences which contain some
motive, reason, cause or even an illustration of that which preceeds.”

For the purpose of annotation we do not distinguish between the two usages marking emphasis
(sense 2 of Sanskrit-Hindi) and marking exclusiveness (sense 4 of the Sanskrit-Hindi). We treat
them under a generic term sambandaḥ, but we distinguish these usages from the usage of one
marking the cause. The reason for not distinguishing between the emphasis and exclusiveness is
that for their disambiguation just a sentence level information is not sufficient. One has to look
at the context that may involve extra-linguistic information. There were total 66 shlokas that
have ‘hi’. Śaṅkarācārya has commented on all the ślokas from 10th verse of the second chapter.
There were 5 instances of ‘hi’ till the 9th verse of the second chapter. Excluding these 5, among
the remaining 61, Śaṅkara has marked 46 instance of ‘hi’ as causal indicator, and 15 fall under
the second category.

Both the authors classified ‘hi’ in two categories independently without reffering to the
Śaṅkarabhāśya. The classification is represented in Table 3.

kārya-kāraṇam sambandaḥ total
Annotator 1 33 33 66
Annotator 2 49 17 66

Table 3: Inter-annotator agreement

The inter-annotator confusion matrix is shown in the Table 4. The comparison of the anno-
tations of both the authors with that of Śaṅkara is shown in the Tables 5 and Table 6.

Thus we notice that, if we consider the Śaṅkarabhāśya as the gold data, the performance
of the annotators measured against the gold data is not very satisfactory. Annotator 1 could

Annotator1↓ Annotator2 →
kārya-kāraṇam sambandaḥ Total

kārya-kāraṇam 27 6 33
sambandaḥ 22 11 33
Total 49 17 66

Table 4: confusion matrix: Annotator 1 and 2

Annotator1↓ Śaṅkarbhāṣya →
kārya-kāraṇam sambandaḥ Total

kārya-kāraṇam 25 4 29
sambandaḥ 21 11 32
Total 46 15 61

Table 5: confusion matrix : Annotator 1 and Śaṅkarabhāśya

80

Annotator2↓ Śaṅkarbhāṣya →
kārya-kāraṇam sambandaḥ Total

kārya-kāraṇam 39 6 45
sambandaḥ 7 9 16
Total 46 15 61

Table 6: confusion matrix : Annotator 2 and Śaṅkarabhāśya

mark only 60% of the cases correctly and the annotator 2 marked around 79% of the cases
correctly. The disagreement between two annotators is also high, around 42%. If we look at
the reason behind these differences we notice that the use of ‘hi’ as an emphatic marker or
exclusiveness marker sometimes also imply kārya-kāraṇam. This is observed in the commentary
on ‘vyākhyānato viśeṣapratipattiḥ na hi sandehāt alakṣaṇam’. Here, we notice that almost
all commentators before Nāgeṣa consider the use of ‘hi’ as an emphatic marker, but Nāgeṣa
categorically calls it kāraṇa-dyotakaḥ. The point we would like to drive here is that it is not
trivial to disambiguate and many-a-times the whole context, the purpose etc. need to be taken
into account.

Based on the data available we came up with some heuristics that uses the information of
position of ‘hi’ and the presence of pronouns or negative particle before it to classify ‘hi’ into
two categories. The results of the heuristics are shown in table 7. We note that the machine has
provided correct results in 83% of the cases, outperforming both the annotators! It, of course,
remains doubtful, if the heuristics developed for SBG will hold good across various genre of
texts. The simple heuristic used is: if the word ‘hi’ is at the second or the third position in a
sentence, then it is marked as a kāry-kāraṇa-bhāva, with some special rules when the pronouns
and indeclinables occur before the word hi. In all other cases it is marked as a sambandhaḥ.

Gold Data↓ Machine Results →
kārya-kāraṇam sambandaḥ Total

kārya-kāraṇam 41 5 46
sambandaḥ 5 10 15
Total 46 15 61

Table 7: machine produced results with comparison to gold data

6 Conclusion
The task of identifying analysing and implementing inter-sentential discourse relations with IGT
perspective is still at an initial stage. We have identified various inter-sentential relations based
on the explicit markers. Our next task is to identify the pair of verbs showing the expectancies
such as to ask and to answer, to buy and to sell, etc. Another important task is to develop
a module for anaphora resolution. We also noticed that the disambiguation is not an easy
task. While some heuristics helped us in disambiguating the word hi it is not yet clear how
much domain dependenct are these heuristic rules. The most important task ahead is therefore
modeling yogyatā.

References
Debopam Das and Manfred Stede. 2018. Developing the Bangla RST Discourse Treebank. In Interna-

tional Conference on Language Resources and Evaluation.

G V Devasthali. 1959. Mīmāṃsā: The vākya śāstra of Ancient India. Booksellers’ Publishing Co.,
Bombay.

81

M. A. K. Halliday and R. Hasan. 1976. Cohesion in English. English Language Series, London.

Dhanurdhar Jha. 2002. Vākyārtha vivecanam. Naag Publishers, Jaipur.

Feng Jiang, Sheng Xu, Xiaomin Chu, Peifeng Li, Qiaoming Zhu, and Guodong Zhou. 2018. MCDTB: A
macro-level Chinese discourse TreeBank. In Proceedings of the 27th International Conference on Com-
putational Linguistics, pages 3493–3504, Santa Fe, New Mexico, USA. Association for Computational
Linguistics.

K V R Krishnamacharyulu. 2009. Annotating the Sanskrit texts based on the śābdabodha systems. In
3rd International Sanskrit Computational Symposium. LNAI Springer Verlag.

Amba Kulkarni and Monali Das. 2012. Discourse analysis of Sanskrit texts. In Proceedings of the
Workshop on Advances in Discourse Analysis and its Computational Aspects, pages 1–16, Mumbai,
India, dec. The COLING 2012 Organizing Committee.

Amba Kulkarni and Sanjiv Panchal. 2019. Co-ordination in Sanskrit. In Indian Linguistics, 80(1-2),
pages 59–76.

Amba Kulkarni. 2019. Sanskrit parsing based on the theories of Śābdabodha. Indian Institute of Advanced
Study, Shimla and D K Publishers (P) Ltd.

Amba Kulkarni. 2021. Sanskrit parsing following Indian theories of verbal cognition. ACM Trans. Asian
Low-Resour. Lang. Inf. Process., 20(2), Apr.

S Sheeja Kumari and Sobha Lalitha Devi. 2016. Annotations of connectives and arguments in malayalam
language. volume 25, pages 280–285. 1st Global Colloquium on Recent Advancements and Effectual
Researches in Engineering, Science and Technology - RAEREST 2016 on April 22nd & 23rd April
2016.

William C. Mann and Sandra A. Thompson. 1988. Rhetorical structure theory: Towards a functional
theory of text organization.

Lucie Mladová, Šárka Zikánová, and Eva Hajicová. 2008. From sentence to discourse: Building an
annotation scheme for discourse based on prague dependency treebank. In Proc. of LREC.

Madhusudan Penna. 2021. Pūrva Mīmāṃsā śāstra, volume 2. Booksellers’ Publishing Co., Bombay.

Livia Polanyi. 2008. The linguistic structure of discourse. In The Handbook of Discourse Analysis, pages
265–281.

Rashmi Prasad, Nikhil Dinesh, Alan Lee, Eleni Miltsakaki, Livio Robaldo, Aravind Joshi, and Bonnie
Webber. 2006. The Penn Discourse TreeBank - Annotation Mannual 1.0. University of Pennsylvania.

Ravi Teja Rachakonda and Dipti Misra Sharma. 2011. Creating an annotated Tamil corpus as a discourse
resource. In Proceedings of the 5th Linguistic Annotation Workshop, pages 119–123, Portland, Oregon,
USA, June. Association for Computational Linguistics.

Kevalanand Saraswati. 1888. Mīmāṃsā koṣa, volume 7. Pradnya Pathashala Mandal Granthamala.

P.M. Scharf and H.H. Hock. 2015. Sanskrit Syntax: Selected Papers Presented at the Seminar on Sanskrit
Syntax and Discourse Structures, 13-15 June, 2013, Université Paris Diderot. Sanskrit Library.

J. S Speijer. 1886. Sanskrit Syntax. Leyden : E.J. Brill, University of Cornell.

Hrishikesh Terdalkar and Arnab Bhattacharya. 2019. Framework for question-answering in sanskrit
through automated construction of knowledge. In 6th International Sanskrit Computational Linguistics
Symposium (ISCLS), pages 98–117.

Oza Umangi, Prasad Rashmi, Kolachina Sudheer, Misra Sharma Dipti, and Joshi Aravind. 2009. The
Hindi discourse relation bank. In Proceedings of the Third Linguistic Annotation Workshop (LAW III),
pages 158–161, Suntec, Singapore, aug. Association for Computational Linguistics.

Bonnie Lynn Webber and Aravind K. Joshi. 1998. Anchoring a Lexicalized Tree-Adjoining Grammar for
discourse. In Discourse Relations and Discourse Markers.

Florian Wolf and Edward Gibson. 2005. Representing discourse coherence: A corpus-based study.
Computational Linguistics, 31(2):249–287.

82

Deniz Zeyrek, Işin Demirşahin, Ayişiği Sevdik-Çalli, Hale Ögel Balaban, İhsan Yalçinkaya, and
Ümit Deniz Turan. 2010. The annotation scheme of the Turkish discourse bank and an evalua-
tion of inconsistent annotations. In Proceedings of the Fourth Linguistic Annotation Workshop, pages
282–289, Uppsala, Sweden, July. Association for Computational Linguistics.

83

A fast prakriyā generator

Arun Prasad
Ambuda

arun@ambuda.org

Abstract

We present vidyut-prakriya, a program that generates Sanskrit words along with their
Pāṇinian derivations. vidyut-prakriya implements more than 2,000 rules of the Aṣṭād-
hyāyī and has strong support for tiṅantas, kṛdantas, taddhitāntas, and subantas, with
partial support for samāsas and accent. Our program compiles to fast native code and
also compiles to WebAssembly for in-browser use. Informal benchmarks indicate that
vidyut-prakriya is almost three orders of magnitude faster than comparable open-
source systems. We end by discussing various applications of a fast prakriyā generator
and directions for future work.

1 Introduction

Many Sanskrit programs use and rely on a lemma list that contains verb roots, nominal stems,
and other headwords. For example, an electronic dictionary maps a list of lemmas to a list of
definitions. Some programs also rely on a word list that contains inflected versions of various
lemmas. For example, a more sophisticated electronic dictionary might accept an inflected word
then show results for the word’s underlying lemma. This distinction between lemma lists and
word lists is simple but important. Whereas lemma lists might contain entries like गम ्and दवे,
word lists might contain entries like गछित, जिग्मवांसम ्, देय,ै and दवेानाम ्.

While a word list is useful for dictionaries and other query interfaces, it has other applications
as well. For example, programs that analyze Sanskrit sentences have a long history of using
word lists internally,1 which continues into modern approaches like Sandhan et al. (2022). Ad-
ditionally, popular resources for students of Sanskrit grammar, such as Bodas (2023), display
hundreds of thousands of verbal and nominal forms for students, and these forms are regularly
consulted by modern-day Sanskrit communities. S. Prasanna (2022) also illustrates the utility
of a word list for spellchecking by using both an explicit list of irregular forms and an implicit
list that joins base words with a suffix table. We believe that word lists are likewise valuable to
any application that cares deeply about correctness.

Given these applications, we believe that an even larger word list might better suit some
of these needs, which makes creating such a list a valuable problem to pursue. But since the
Sanskrit word list is infinite and grows recursively, we cannot represent it in a straightforward
way. So in practice, an infinite word “list” is rather a finite program that can generate words
as needed. The challenge, then, is to to create such a program so that it solves needs similar to
the ones we describe above.

One promising strategy for creating such a program, as demonstrated by Bharati et al. (2006)
and others, is to combine an ad-hoc list of attested forms with some method of abstraction,
such as a finite state automaton, a statistical model, or a set of manually implemented rules.

1Hellwig (2009) and Goyal and Huet (2016) are particularly notable for their longevity and impact. We also
have high regard for the Saṁsādhanī toolkit from the University of Hyderabad, but we are less familiar with how
it works internally.

84

This approach works well if the ad-hoc list is sufficiently rich to expose all of the edge cases and
subtleties of Sanskrit grammar, but we have found that approaches in this vein, as impressive
as they are, are prone to over- and under-generating, which means that they might allow invalid
words and reject valid ones. This kind of behavior is not always a problem, and it can even
be preferable for some use cases; but, it is less suited for applications that care deeply about
correctness.

An alternative strategy is to directly implement the underlying rules that generate these words.
This is the approach most famously taken by the Aṣṭādhyāyī, which condenses the mechanics of
Sanskrit grammar to roughly 4,000 short rules. When combined with secondary texts like the
Dhātupāṭha and vārttikas from the commentarial literature, the Aṣṭādhyāyī provides a powerful
system for generating an infinite number of Sanskrit words.

Accordingly, there are several systems that have implemented parts of the Aṣṭādhyāyī, each
with different philosophies and goals. Mishra (2009), for example, proposes a formal structure
that is highly Pāṇinian in spirit, with each sound in a word having a specific formal representa-
tion. Scharf (2015) likewise creates a meticulous formal representation of the Aṣṭādhyāyī ’s rules
in XML that can be converted to executable code. Goyal et al. (2009) use a simpler internal
representation but also describe a rich model for conflict resolution between rules. Patel and
Katuri (2015), meanwhile, avoid simulating conflict resolution but gain substantial performance
benefits in return.

A program that implements the Aṣṭādhyāyī ’s rules can usually also create a prakriyā, a step-
by-step derivation that shows which rules of grammar act to create a specific inflected word.
For students, a prakriyā explains and elucidates the principles of the grammar; for engineers, a
prakriyā reveals the grammar’s operations in case it needs to be debugged; and for downstream
applications, a prakriyā provides detailed grammatical information about a given word. Thus a
prakriyā is highly useful in multiple settings.

Rule Result
3.2.123 भू + लँट ्
3.4.78 भू + ितप ्
3.1.68 भू + शप +् ित
7.3.84 भो + अ + ित
6.1.78 भव +् अ + ित
(final) भवित

Table 1: An abbreviated prakriyā for the word भवित. Items on the left are references to specific
rules in the Aṣṭādhyāyī. We have elided various minor rules.

This paper presents our work toward building a comprehensive prakriyā generator based on
the Aṣṭādhyāyī. We have implemented just over 2,000 rules from the Aṣṭādhyāyī, and these rules
span all major sections of the text. In addition, we have implemented around 500 rules from
the Uṇādipāṭha and around 50 rules from the Pāṇinīyaliṅgānuśāsanam. Our main contributions
are the generator itself and our specific engineering decisions, which we believe make a complete
implementation of the Aṣṭādhyāyī more feasible and useful.

Section 2 describes our approach and the engineering and grammatical principles we follow in
this work. Section 3 describes our program’s high-level architecture, including which texts we
use as the basis of our work. Section 4 describes our implementation, including our data model,
pieces of our API, a few example rules, and a description of how we handle optional derivations.
Section 5 describes our testing methodology, which draws primarily from the traditional gram-
matical literature. Section 6 describes the current state of our work and its limitations. The
remaining sections describe applications of this work, directions for future work, and our overall
conclusions.

85

2 Approach
We have viewed our program first as an engineering problem and second as a grammatical one.
That is, we have prioritized those principles that allow us to build a safe, fast, and consistent
program that produces accurate results. Since we are non-grammarians, our approach is to some
extent anti-theoretical, meaning that we have used traditional grammatical literature primarily
as a source of examples but have not deliberately followed a specific system of interpretation or
rule ordering.

2.1 Engineering strategy
Broadly, we follow a variety of engineering principles that we have found to lead to maintainable
and high-quality software. While these principles are not absolutes, they are generally true in
our system:

• Don’t reinvent the wheel. We acknowledge that prakriyā generators are well-trod ground.
That said, we have aimed to create a generator that improves on the state well enough to
become a community standard. In service of this goal, we have implemented our generator
in Rust, a relatively new systems language that combines low-level control with high-level
ergonomics. One happy consequence of this decision is that we can easily bind our program
to other languages. In other words, we can readily provide the same core implementation
in multiple environments and languages. As proofs of concept, we have created Python
bindings2 through Rust’s PyO3 library and JavaScript bindings through Rust’s wasm-pack
ecosystem.3

• Don’t repeat yourself (DRY). We generally implement a rule in exactly one place in our code,
which means that each rule we use has exactly one formal specification. Where necessary,
we reuse rules sparingly through function calls. Likewise, we maintain a simple, linear,
and predictable control flow as opposed to (for example) dynamically selecting and ranking
rules within an event loop.

• If it isn’t tested, it’s broken. The Aṣṭādhyāyī contains thousands of interconnected rules, and
an innocuous change to one rule can easily break dozens of others. Therefore, we generally
test each rule with representative examples and counterexamples from the Kāśikāvṛtti. We
have also an extensive set of additional tests from the Siddhāntakaumudī. We explain more
about our testing procedure in section 5.

• Speed is a feature. A comprehensive test suite is useful only if it can run in a reasonable
amount of time. While we avoid over-optimizing (Premature optimization is the root of
all evil), we have done enough that our full test suite, which creates roughly 1.7 million
words, runs in under a minute on our 2019 MacBook Pro. In particular, Rust has continued
to pay dividends not only through its native speed but also due to its rich ecosystem of
high-performance libraries.

• Given enough eyeballs, all bugs are shallow. All of our code is open-source and available
online.4 So far, five people have reported bugs and five have submitted code to our program.
As more people use our program and its results, we increase the likelihood of finding mistakes
and errors, which we can then correct and add to our test suite.

2.2 Grammatical strategy
As non-grammarians without much expertise in traditional grammar, we have laid aside issues
of theory and set ourselves a much humbler task: to generate a list of valid Sanskrit words while
adhering to Pāṇinian rules as closely as we can. Specifically:

2Available at https://pypi.org/project/vidyut/
3Demonstrated at https://ambuda-org.github.io/vidyullekha.
4You may find our code at https://github.com/ambuda-org/vidyut under the vidyut_prakriya directory.

86

• In our schema, a word is valid if and only if it is attested by a grammatical authority. So
far, we have focused most closely on the Kāśikāvṛtti and the Siddhāntakaumudī (SK) as
published at Bodas (2023). We hope to expand our set of examples as time allows.

• We follow Patel and Katuri (2015) by manually ordering rules and avoiding any explicit
model of conflict resolution. This policy greatly increases the program’s efficiency because
the program can run code in a simpler and more predictable way, which helps both the
compiler and the CPU process the program more efficiently.

• We interpret a rule in whatever way will let us generate valid words and avoid invalid ones.
Generally, we have followed the interpretations of the Kāśikāvṛtti, but there is no broader
principle we apply when interpreting rules. We do not model anuvṛtti.

• For ease of reference, we prefer to group rules by their ordering in the text. For example,
our implementation of 7.2.61 is immediately next to our implementation of rule 7.2.62, and
likewise these two rules appear in a similar place in our overall control flow. It is often not
possible to follow this condition, but we do so where we can.

3 Architecture
This section explains the high-level architecture of our program, with a low-level view of imple-
mentation details in section 4.

3.1 Texts used
We focus on the Aṣṭādhyāyī and also include vārttikas from the Kāśikāvṛtti and the Siddhān-
takaumudī. Our approach to vārttikas has been to first find examples from the grammatical
literature that the program does not support and then implement the vārttikas necessary to
support those examples. We have taken this approach because we think that doing so helps us
better shape the overall design of the program.

We have consulted and used specific paribhāṣās from the Paribhāṣenduśekhara only if doing
so was necessary to resolve an explicit error in our program. For example, we have made use of
िश्तपा शपानबुधने ... for our yaṅ-luk derivations.

Our Dhātupāṭha, which comes from Bodas (2023), is a superset of Dhātupāṭhas from var-
ious sources, including the Siddhāntakaumudī, the Mādhavīyadhātuvṛtti, and the Bṛhaddhā-
tukusumākara. The dhātus in this list include anubandhas, and we have also modified the list to
explicitly include accent. Some example entries in SLP1 transliteration include RI\Y, qukf\Y,
and qupa\ca~^z. Our program is not coupled to any specific Dhātupāṭha and will accept any
dhātu as long as the user defines its gaṇa and antargaṇa and correctly specifies its anubandhas
and accent.

The other texts we use, including the Uṇādipāṭha and the Gaṇapāṭha, are as specified in the
Siddhāntakaumudī.

3.2 Data model
Traditional grammar describes the items in a derivation with various labels, such as pratyaya,
āgama, dhātu, prātipadika, abhyāsa, and so on. In our data model, all of these concepts are
aspects of a more general notion that we call a term.5 In our program, we explicitly model and
store all of the following for a given term:

• The term’s “visible” or surface representation, which will change according to the rules of
the grammar.

• The term’s instructional (औपदिेशक) form, which is how the term is first described in the
grammar. This form includes accents and anubandhas where applicable.

5We do not know if this concept has a traditional name.

87

• All designations (सजं्ञा) that are added by the rules of the grammar, as well as other properties
that we describe in 4.1.

• All prior instructional forms, if full substitution applies by 1.1.55 (अनकेािशसवर्य).

For example, our program will represent the verb root डुकृञ ्as having the instructional form
qukf\Y (in SLP1 transliteration), the visible form kf (which might change to kar, kAr, etc.
during the derivation), and the designations of dhātu, aṅga, ḍvit, and ñit. We also store that
the root vowel is anudātta since this information is necessary to trigger certain rules.

All other details of our data model are less important, and we refer the reader to section 4.1
for details.

3.3 Argument model
Since the Aṣṭādhyāyī is a precise system, we require the user to specify their input conditions
in precise detail. For example, suppose that we wish to derive the word kArayan. To do so, we
must tell the program that we wish to derive a masculine nominative singular subanta from the
kṛdanta formed by adding śatṛ to the sanādi-dhātu formed by adding the suffix ṇic to the mūla-
dhātu ḍukṛñ that is listed in tanādigaṇa. This complex idea becomes clearer when represented
as an s-expression:

(subanta
(kṛdanta

(dhatu
sanadi
(dhatu mula qukf\Y tanādi)
Ric)

Satf)
masc nom sg)

We have tried to strike a balance between precision and pedantry, and we use Rust’s rich type
system to guide the user toward a correct request. For example, a Rust program that tries to
add a kṛt suffix to a prātipadika will fail at compile time because a kṛt suffix can be added only
after a dhātu. Section 4.4 contains details on our specific representation in code.

3.4 Rule model
We model a rule as having two parts: a filter that matches certain conditions and an operator
that applies some change to the grammar. In code, this model naturally maps to a simple if
statement:

if filter(prakriya) {
operator(prakriya);

}

The most important aspect of this model is that it does not model anuvṛtti: for each rule, the
program must explicitly specify all of the conditions necessary for the rule to apply. By avoiding
this critical part of the grammar, our program becomes simpler and faster.

That said, an analogue of anuvṛtti exists as follows. If multiple rules can apply only when
some condition x is true, we have found it convenient to write these rules like so:

if x {
if filter_1(prakriya) {

operator_1(prakriya);
} else if filter_2(prakriya) {

operator_2(prakriya);
}

}

88

3.5 Optional rules
Rules can also apply optionally under various conditions. Our program supports two kinds of
option and models them in different ways.

First, we support rules qualified by words indicating an option (vā, vibhāṣā, anyatarasyām,
...), rules qualified by the name of some grammarian, and most rules defined only in a specific
semantic sense as follows:

1. Suppose that the program sees optional rules A, B, and C during the derivation. By default,
the program accepts each rule. In addition, it also records that rules A, B, and C apply
optionally.

2. Once the derivation is complete, the program inspects the output of step (1) and notices
that rules A, B, and C are optional. it then creates three new combinations from these
rules, namely (A,B,¬C), (A,¬B), and (¬A). Here ¬A means a rejection of A. These three
“rule paths” are all added to a queue of unexplored combinations.

3. As long as the queue is non-empty, we pop a path from the queue and run the derivation
again using the rule decisions that the path describes. If this process encounters new
optional rules, we likewise create new rule paths for them. For example, if we find that we
can follow the rule path (A,¬B,D,E), then we add (A,¬B,¬D) and (A,¬B,D,¬E) to
the path.

To model a choice between three or more options, we split the rule into two binary options.
For example, consider rule 3.1.40 (कृचानपुयुयत े िलिट), which provides a choice of three different
verb roots (कृ, भ,ू and अस)् when deriving the periphrastic perfect tense. In this scenario, our
program first chooses whether or not to use भू then chooses whether or not to use अस ्.

This basic model has been workable for most rules but is too crude for taddhita rules, where
a specific suffix is available under different rules in different meaning conditions. We instead
model such rules as follows:

1. When using the program, the user can optionally request that a taddhita should be added
only with a specific meaning.

2. When checking if a taddhita rule can apply, the program first checks if the user requested a
specific meaning that is compatible with the rule. If so, and if the rule requires a different
meaning condition, the program skips the rule. If the user did not request a specific meaning,
the program simply adds the taddhita as long as at least one rule can provide it for the
user’s input conditions.

3.6 Conflict resolution
We provide no explicit model of conflict resolution. That is, if rule 2 can block rule 1, our
program does not inspect the properties of these two rules and has no explicit logic to rank or
decide which should apply. Instead, we take the approach similar to Patel and Katuri (2015)
and implement these rules as follows:

if filter_2(prakriya) {
operator_2(prakriya);

} else if filter_1(prakriya) {
operator_1(prakriya);

}

We stress that this approach neglects a core issue in interpreting and modeling the Aṣṭād-
hyāyī. It provides no model of a rule’s properties, no explicit encoding of common paribhāṣās
like पवू र्परिनयातरगापवादानामुतरोतरं बलीयः, no convenient way to reorder or rerank rules (other than
editing code), and no precise way of informing the user that one rule has blocked another.

89

As compensation, however, this approach provides code that is much simpler, much faster,
and much easier to change and understand, and we believe that these advantages are highly
compelling.

3.7 Rule ordering
Given the rule model we describe above, a natural question is how we decide whether one rule
should apply before another. Simply, our ordering is ad-hoc and chosen in whatever way will
correctly generate the test cases we describe in section 5 while adhering to the engineering
principles we described in 2.1. While this approach is crude, our use of the “DRY” principle
of non-repetition in code means that our program generally commits to a single ordering that
applies consistently across all examples in our test suite.

We say that this principle applies generally because we have occasionally had to violate it by
duplicating a rule. For a trivial example, we apply the it-saṃjñā rules and most saṃjñā rules
whenever a term is added to the derivation. For a more interesting example, our system applies
rule 6.1.66 (लोपो योव र्िल) twice: once before guṇa so that we can correctly derive नोपयित (from ूनय ्
+ प ुकँ ् + िणच)् and once after guṇa so that we can correctly derive अभतू ्(from भ)ू.

3.8 Rule organization
Conceptually, we group our rules into two categories: preparing rules and finalizing rules. Prepar-
ing rules introduce terms to the derivation but apply few changes, and they include most rules
in adhyāyas 1-5. Finalizing rules apply various phonetic changes to terms in the derivation, and
they include most rules in adhyāyas 6-8. We have separated rules in this way so that we can
support nested derivations, which we have tested in basic cases but not yet in recursive ones.

For example, let us continue with the example of kArayan that we mentioned in section 3.3.
Given our specification, the program prepares each item from the innermost out then finalizes
the derivation to create the requested output:

1. Prepare qukf\Y by adding it to the derivation and applying it-saṃjñā-lopa and other saṃjñā
rules.

2. Prepare Ric by adding it to the derivation and applying the same rules as in (1).

3. Finalize to create the root kAri. Our current implementation always runs this phase after
adding sanādi suffixes because doing otherwise causes the program to fail on some of our
test examples.

4. Prepare Satf~ by first adding la~w to the derivation then replacing it with Satf~, as
specified by 3.1.124 (लटः शतशृानचावपथमासमानािधकरण)े. We then apply it-saṃjñā-lopa and other
saṃjñā rules. Satf~ also conditions the addition of Sap, so we add it then apply the same
rules as in (1).

5. Prepare su~ by adding it to the derivation and applying the same rules as in (1). The
derivation at this stage is kAri + a + at + s.

6. Finalize to apply substitutions and sound change rules. The final word is kArayan.

4 Implementation
Here we explain some implementation details from our system, which amounts to around 25,000
source lines of code excluding tests. All code in this section is adapted directly from our imple-
mentation, with light edits for clarity and readability.

We store text data internally with SLP1, which simplifies our underlying logic and reduces
the computational overhead for core operations. For details on SLP1, see Scharf and Hyman
(2012).

90

4.1 Core data types
We start by presenting the core data types in our program. Almost all of our program’s rules
involve testing and transforming the data types below.

Our most basic data type is a Term, which is a string annotated with additional metadata:
struct Term {

upadesha: Option<String>,
text: String,
sthanivat: String,
tags: EnumSet<Tag>,
gana: Option<Gana>,
antargana: Option<Antargana>,
lakshanas: Vec<String>,
svara: Option<Svara>

}

enum Tag { .. }
enum Gana { .. }
enum Antargana { .. }
enum Svara { .. }

Here are some of the key terms in the example above:

• struct indicates a heterogeneous collection of fields.

• enum indicates an enumeration, i.e. a choice of one item among the members in a list.

• Vec indicates a list of elements.

• Option is how Rust models a field that can be either present or absent.

• EnumSet is a third-party library that lets us model a set of enum values.

The most important fields on Term are text, which is the surface representation of this term;
upadesha, which is the instructional (औपदिेशक) representation as enunciated in works like the
Dhātupāṭha; and lakshanas, which contains a history of substitutions for this term, as per rule
1.1.62 (पययलोप े पययलक्षणम)्. In particular, upadesha lets our code process a Term in predictable
ways despite any phonetic changes to the surface form in text. sthanivat, which we named by
reference to rule 1.1.56 (थािनवदादशेोऽनिवधौ), is necessary for certain rules in our implementation,
particularly those that deal with dvitva on a causative root.6 svara specifies the accent type
and (if applicable) which vowel in the term the accent should apply to.7

The Tag enum generalizes the saṃjñā concept from traditional grammar. In addition to
including traditional saṃjñās, Tag also contains various flags that are useful for the derivation.
For example, we indicate that a term’s last a vowel has been deleted through the tag FlagAtLopa.

We model a derivation as a list of Term structs along with additional metadata:
struct Prakriya {

terms: Vec<Term>,
tags: EnumSet<Tag>,
history: Vec<Step>,
config: Config,
rule_decisions: Vec<RuleChoice>,

6We chose the name sthanivat for this concept for lack of a better name. We wish to assure the reader that
we are aware of how important rule 1.1.56 and have modeled it appropriately throughout the program.

7Rust enums are more powerful than simple enumerations and can also contain extra data. This type of model
is more properly known as a sum type.

91

lakara: Option<Lakara>,
}

enum RuleChoice {
Accept(Rule),
Decline(Rule),

}

enum Rule {
Ashtadhyayi(String),
Kashika(String),
Dhatupatha(String),
Unadi(String),
Linganushasana(String),
Kaumudi(String),

}

The syntax here is broadly similar to the Term illustration above. For brevity, we have elided
the Config and Step structs, which are straightforward. In the definitions of RuleChoice and
Rule, note that Rust’s enum type can also associate data with each enum variant.

After terms, the most noteworthy fields here are history and rule_decisions. history
stores each rule applied in the derivation along with its result. rule_decisions stores specific
decisions on optional rules that were encountered during the derivation, and we refer the reader
to section 3.4 for details.

The strength of this data model is that we can split a word’s derivation into separate strings
that each have their own metadata, and we have found such a data model to be highly convenient
for most rules. That said, its main limitation is that it is not a hierarchical representation,
meaning that we cannot easily take either a broader or narrower view:

• The broader view: Our representation is most convenient when one term represents one core
notion, such as a pratyaya. But during a derivation, we might introduce various āgamas
that come between a pratyaya and the base it follows. In this situation, we most frequently
resort to a TermView, a new data structure that abstracts over multiple Terms. While
TermView is useful and has reasonable ergonomics, it ultimately highlights a weakness of
the underlying data model.

• The narrower view: Our representation assumes that each sound in a derivation belongs
to exactly one term. However, this assumption does not always hold. For example, certain
derivations apply rules that fall in the jurisdiction of rule 6.1.84 (एकः पवू र्परयोः), which states
that a single substitute should be treated as part of both the previous and the following
items. Our data schema above cannot model this, and we have worked around it with a small
hack: we annotate the first term in the sandhi combination with the FlagAntyaAcSandhi
tag and block rules like 8.2.39 (झलां जशोऽत)े from applying between two terms if the first
term has this tag. In the future, we might implement an explicit model of rule 6.1.84 that
our API can check.

A more Pāṇinian data structure might be a list of string spans that each have their own
metadata. But in our view, it is not obvious how to create a clean and efficient API for working
with such spans. Despite its limitations, our list of Terms has been successful so far.

4.2 API
On top of these data types, we have created a rich API that lets us easily inspect, test, and
transform our derivation state. Below is a representative example of our Term API:

92

impl Term {
fn antya(&self) -> Option<char> {

self.text.chars().rev().next()
}

fn has_antya(&self, char: c) -> bool {
self.antya() == Some(c)

}

fn set_antya(&mut self, s: &str) {
let n = self.text.len();
if n >= 1 {

self.text.replace_range(n - 1..n, s);
}

}
}

Here, antya returns the Term’s final character, or None if the term is empty. Likewise,
has_antya tests whether the Term has a given final sound, and set_antya modifies the last
sound of the Term in-place. (set_antya accepts multiple characters to better support certain
kinds of substitutions.)

In our production code, has_antya uses Rust’s support for generic arguments to also accept a
set of sounds, which lets us test (for example) whether a given Term ends in a specific pratyāhāra.

Prakriya likewise exposes a high-level API for changing internal state. These functions pri-
marily accept closures, which are akin to inline functions. We use closures in part for readability
and in part because we found it easier to do so while complying with Rust’s semantics. Below
is a representative example of our Prakriya API:
impl Prakriya {

fn run(&mut self, rule: Rule, operator: impl Fn(&mut Prakriya)) -> bool {
operator(self);
self.step(code);
true

}

fn run_optional(&mut self, rule: Rule, operator: impl Fn(&mut Prakriya)) -> bool {
if self.is_allowed(rule) {

operator(self);
self.step(rule);
true

} else {
self.decline(rule);
false

}
}

}

4.3 Implementing rules
Together, this combination lets us tersely express rules in a human-readable way without sacri-
ficing performance:

let yi_kniti = next.has_adi('y') && next.is_knit();
if anga.has_upadesha("SIN") && next.is_sarvadhatuka() {

prakriya.run_at("7.4.21", anga_index, |term| term.set_text("Se"));

93

} else if anga.has_upadesha("SIN") && yi_kniti {
prakriya.run_at("7.4.22", anga_index, |term| term.set_text("Say"));

}

Note the explicit ordering of rules, the relatively terse code, and the use of if-else chains
to implement rule blocking. Our production code is largely the same, but it heavily abbreviates
common terms like prakriya and term and contains some method names that are legacies of
earlier stages of development.

4.4 Argument types
Our public API requires users to define their input conditions with precise types. To continue
the example from section 3.3, our program models the input conditions for kArayan as follows,
with some minor syntax elided for clarity:

let kr = Dhatu::mula("qukf\\Y", Tanadi).with_sanadi(&[Sanadi::Ric]);
let karayat = Krdanta::new(kr, Krt::Satf);
let karayan = Subanta::new(karayat, Pum, Prathama, Eka);

4.5 Performance
Since our full test suite has more than a million examples, we wish to ensure that our program
completes in a reasonable amount of time. To that end, we have taken reasonable steps to ensure
that the developer experience does not suffer.

Perhaps the most significant decision here is our choice of the Rust programming lan-
guage. Rust’s combination of speed and memory safety makes it an attractive choice for
high-performance programming projects, as noted in work like Bugden and Alahmar (2022).
In addition to Rust’s native capabilities, we wish to highlight three other features that have
benefited our program:

• Strong tooling. The default Rust installation includes a tool called cargo, which manages
dependencies, builds code for different environments, runs tests, lints and formats code,
and catches common style problems. cargo has allowed us to set aside ancillary concerns
and focus on implementing rules, and it has also made it easier for us to onboard new
contributors to our work.

• Useful libraries. Rust maintains a centralized package repository where library versions are
guaranteed to be stable and available. For example, the compact_str library gives us access
to memory-efficient string types that can be stack-allocated if they are sufficiently short.
As another example, the rayon library provides a lightweight library for parallel execution
on iterators, which allows us to more quickly generate a very large word list.

• Easy reuse. Rust is easy to bind to other languages and environments, which removes the
toil of porting an implementation to another setup. As a proof of concept, we have created
the vidyut Python library, which is available on Python’s standard package index. We
have also created a WebAssembly build that can run on a user’s device without an internet
connection.

5 Testing
The Aṣṭādhyāyī generates an infinite number of words, and it is impossible to test them all.
Therefore, any implementation of the Aṣṭādhyāyī must have a robust testing strategy to justify
some level of correctness.

We have tested our program with three kinds of tests: unit tests from the Kāśikāvṛtti, re-
gression tests from the Siddhāntakaumudī, and snapshot tests that monitor changes over time.
Our unit tests and regression tests combine to just under 32,000 lines of source code, and our
snapshot test suite contains just under 1.7 million examples.

94

5.1 Unit tests

Generally, the ancient grammatical literature illustrates the function of a rule with various
examples and counterexamples, which establish and limit the rule’s scope respectively. We have
especially leaned on the Kāśikāvṛtti for these examples, since it works through the Aṣṭādhyāyī
rule by rule and generally limits its commentary to one rule at a time.

A typical unit test appears as follows:

#[test]
fn sutra_3_1_68() {

assert_has_lat(&[], &dhatu("BU", Bhvadi), &["Bavati"]);
assert_has_tip(&[], &dhatu("qupa\\ca~^z", Bhvadi), &["pacati"]);

}

We have created a variety of test functions like assert_has_lat, assert_has_tip, etc. to
verify certain forms. In the example above, the first argument is for upasargas, and &[] indicates
that we wish to derive the given form without upasargas. Note that "qupa\\ca~^z" contains
both anubandhas and accent marks, both of which are necessary for the program to run correctly.
Note also that we use assert_has_tip to restrict the output for पच ्to use only parasmaipada
endings, if they are available for the root. If we used assert_has_lat instead, then the program
would produce both पचित and पचते and the test would fail.

We implement a rule’s tests by including all examples mentioned in the Kāśikāvṛtti’s commen-
tary on that rule, to the extent that we are able to. We fail to do this either if we are unclear on
the intended result or if bugs or other technical limitations prevent us from implementing a given
example. For now, we mark these challenging examples with TODOs, or in more significant cases,
we disable the test entirely. For example, we have disabled the test for rule 3.2.12 (तबकणर्यो
रिमजपोः) because we have not implemented the rule that allows non-deletion of the case suffix,
which means we cannot produce the expected results तबरेम and कणेजप.

5.2 Regression tests

Although the Kāśikāvṛtti is thorough, its examples are sometimes insufficient to verify that the
program is working correctly. In these cases, we have drawn examples from the Siddhāntakau-
mudī (SK), which tends to focus more on the overall prakriyā rather than on specific rules.
For example, we once noticed a bug in our program where we failed to produce both ऊणुर्निवथ
and ऊणुर्निुवथ (ऊणुर्ञ ्+ िसप ्, िँलट)्. We found an illustration of this case in Kaumudī 2447 and
accordingly implemented it as a test:8

#[test]
fn sk_2447() {

let urnu = d("UrRuY", Adadi);
assert_has_sip(&[], &urnu, Lit, &["UrRunuviTa", "UrRunaviTa"]);
assert_has_tip(&[], &urnu, Lut, &["UrRuvitA", "UrRavitA"]);
assert_has_tip(&[], &urnu, Lot, &["UrROtu", "UrRotu", "UrRutAt"]);
assert_has_mip(&[], &urnu, Lot, &["UrRavAni"]);
assert_has_iw(&[], &urnu, Lot, &["UrRavE"]);

}

Our test suite currently includes almost all examples from prakaraṇas 8-13, which deal with
subantas, and 43-58, which deal with tiṅantas. As our program stabilizes, we expect to add
more and more test cases from the Siddhāntakaumudī.

8Some readers might ask how this test passes given that words like UrRutAd are also valid forms. Briefly, we
have configured our test functions so that they avoid generating nosily duplicative forms. Otherwise, our test
logic would be both more tedious to write and more cumbersome to read.

95

5.3 Snapshot tests
Our largest test suite is a snapshot test that deterministically generates around 1.7 million words,
including all basic verbs in kartari-prayoga and karmaṇi-prayoga, all kartari and karmaṇi forms
of sannanta, ṇijanta, yaṅanta, and yaṅluganta verbs, and a variety of kṛdantas as well. We store
the hashes of these files as part of our test suite, which means that if any result in any file
changes, our test suite will raise an error that a human being must manually review.

Snapshot testing demonstrates stability but does not prove correctness. Even so, it is a useful
tool for verifying that a rule change does not have unintended consequences.

6 Results
6.1 Implemented rules

Pada 1 Pada 2 Pada 3 Pada 4
Adhyaya 1 27 / 75 31 / 73 72 / 93 36 / 110
Adhyaya 2 41 / 72 9 / 38 2 / 73 35 / 85
Adhyaya 3 117 / 150 139 / 188 79 / 176 38 / 117
Adhyaya 4 86 / 178 73 / 145 87 / 168 111 / 144
Adhyaya 5 64 / 136 64 / 140 73 / 119 62 / 160
Adhyaya 6 117 / 223 8 / 199 38 / 139 143 / 175
Adhyaya 7 80 / 103 112 / 118 84 / 120 86 / 97
Adhyaya 8 0 / 74 65 / 108 59 / 119 33 / 68

Table 2: Rule implementation of 2071 total rules by adhyāya and pāda. This is an undercount
that includes only those rules that might show up in a prakriyā. Paribhāṣās and simpler saṃjñā
rules like ॑ंव लघ ु are not counted here.

Table 2 shows our total count of implemented rules by adhyāya and pāda. Rules are drawn
broadly from all sections of the Aṣṭādhyāyī, with the notable exception of pāda 8.1.

• Tiṅantas have been our primary focus. Our system includes support for all lakāras and
prayogas and implements almost all of the pada rules in section 1.3, including rules that
depend on a specific upasarga. Our system also supports sannanta, ṇijanta, yaṅanta and
yaṅluganta roots, with experimental support for denominative (नामधात)ु roots. Example
words that our program produces include गछित, िजगिमषित, सचकार, िससावियषित/ससुाविययित,
अिदिधषित, and पापिचषत.े

• Kṛdantas have been a secondary focus, and our system here has broad coverage for a variety
of common suffixes, including घञ ्, यटु,् ण्वलु,् शत,ृ ा, त, वस ु,ँ and the like. We have also
implemented support for around 500 rules from the Uṇādipāṭha. Example stems include
गत, अयात/अयिमत, and जिग्मवस/्जगवस ्.

• Taddhitāntas likewise have broad coverage, and they explicitly model a variety of fine-
grained meaning conditions with a Rust enum. We have met with some challenges here
when implementing rules that match against a semantic class, such as “part of the body”
as used in 4.3.55 (शरीरावयवाच). For our coverage here, see adhyāyas 4 and 5 in table 2.

• Subantas have strong support, but we have not run a formal evaluation against systems like
Patel and Katuri (2015). As a rough measure of quality: excluding 8 sutras, we support all
examples in prakaraṇas 8-13 of the Siddhāntakaumudī.

• Samāsas have basic support. We have implemented many of the rules from pādas 2.1, 2.2,
and 6.3 and support a basic model of upapada-samāsas so that we can implement the various

96

kṛt-pratyaya rules in pāda 3.2. Otherwise, initial attempts to model this section have not
felt satisfying since so many rules depend on specific semantic conditions and are relatively
less mechanical than other sections of the text. One option here is to formally model these
semantics in Rust then expose the Rust model through an API.

• Vedic rules have been a recent focus, and we currently support around ten of them.

• Accent rules have partial support. Currently, our accent model is limited to simple patterns
like िलत ्, िचत ्, िपत ्, िरत ्, and the like. For details on our data model for accent, see 4.1.

6.2 Testing
Test coverage broadly follows the pattern of table 2, but we have disabled around 7 percent
of sutra tests. This 7 percent figure is misleadingly high for two reasons. First, we have dis-
abled tests where the system generates results that we don’t know how to reconcile with the
commentaries due to our own lack of grammatical knowledge. For example, the commentary
on rule 7.2.58 (गमिेरट ् परमपैदषे)ु proposes the form संगसीट as a counter example, but our system
also generates सगसीट. We believe that both are correct but have not yet spent the time to vet
this form. Second, we have ignored a test for a rule when any one of its examples is generated
erroneously, no matter how rare that example might be.

The main comparison we wish to present here is with SanskritVerb (Patel (2023)), an exten-
sion of the work in Patel and Katuri (2015) with support for kartari-tiṅantas. SanskritVerb is
a standard implementation in the open-source community and is used in popular projects like
Bodas (2023).

We performed an exhaustive comparison against all basic kartari-tiṅantas generated by
SanskritVerb, which total to around 200,000 forms. After fixing bugs in our setup,
vidyut-prakriya features various small gains over SanskritVerb. A sample:

• Support for optional karmaṇi-luṅ forms (अयािय, अतािय, अदीिप).

• Support for optional tanādi-luṅ forms (अतत, अतथाः).

• Support for periphrastic perfect derivations with अस ्and भू (चोरयामास, चोरयाबभवू).

• Support for optional forms like तनोित, तुनोित, and so on.

• Broad support for ubhayapada derivations in curādi-gaṇa.

• Stronger support for short vowel lengths in certain curādi-gaṇa roots, commonly known as
mittva.

• Support for extra ātmanepada forms for various roots, such as था per rule 1.2.23.

Most differences are of this kind. They are small, incremental improvements based on sup-
porting or tweaking an existing rule. One notable gain is that we support rule 3.1.31 (आयादय
आध र्धातकेु वा), which allows a wide variety of optional forms for various roots listed in rules 3.1.28
to 3.1.30. We can support rule 3.1.31 only because our program has strong support for optional
derivations.

As time allows, we hope to also run a comparison with the Saṁsādhanī system from the
University of Hyderabad.

6.3 Performance
Performance comparisons are an inexact art. This is especially so when comparing two very
different systems. With that caveat, we describe an inexact performance comparison between
vidyut-prakriya and SanskritVerb. Specifically, we measure how long it takes each program
to generate all basic kartari-tiṅantas for a verb root.

97

Setup Time per root (ms)
SanskritVerb 1400
vidyut-prakriya (re-compile after code change) 7.0
vidyut-prakriya (re-compile without code change) 3.5
vidyut-prakriya (no re-compile) 3.3
vidyut-prakriya (no re-compile, no prakriyās) 2.4

Table 3: Comparison of different setups when generating all basic kartari-tiṅantas for a verb
root. All setups were run on the same machine and timed with the time command. Re-
sults show the mean over a representative sample of roots (100 for SanskritVerb and 2200 for
vidyut-prakriya). Here, “no prakriyās” means that prakriyā logging is disabled.

All tests were run on the same machine and timed with Unix’s time command, and these
tests compare both systems as they existed around October 2023. We have not run an updated
evaluation due to time constraints, but we believe that this comparison is still informative
because the code paths being tested have not substantially changed since then.

Table 3 presents the results of this comparison under different scenarios. If using
vidyut-prakriya as a release build with no extra compilation, we see that vidyut-prakriya
is more than 400 times faster than SanskritVerb. If we disable prakriyā logging for
vidyut-prakriya, we find that it is almost 600 times faster.

The most obvious explanation for this difference is that vidyut-prakriya is written in Rust
while SanskritVerb is written in PHP, which is generally a much slower language than Rust.
In addition, SanskritVerb tends to implement rules with regular expressions, which means
that both checking whether a rule can apply and applying a rule to the derivation is relatively
costly. In comparison, vidyut-prakriya tends to perform direct comparisons on stack-allocated
strings, which is a much faster procedure.

PHP and other interpreted languages certainly have their own advantages. For example,
testing a PHP code change on a single example is much faster than doing the same in Rust,
which requires a compile step of several seconds. But if we wish to generate a large number of
words, then a compiled project like vidyut-prakriya is much more effective. This is especially
true for the millions of words we generate currently, but the same principle holds even for a few
thousand.

6.4 Bugs and errors
vidyut-prakriya has a variety of small errors that we explicitly track in our unit and regression
tests. These errors are typically limited to rare or unusual forms. Two examples, both from the
Siddhāntakaumudī :

• सषुषुपुतःु — This is the third-person dual perfect of िञवपँ शये as combined with the prefix
स.ु Currently, our program does not implement rule 8.3.88 (सिुविनदुर्य र्ः सिुपसिूतसमाः), so it
incorrectly applies षव to वप ्after िवव and derives the wrong form ससुषुपुतःु.

• सखा – This is the masculine nominative singular form of सखी as derived from सिख + यच +्
िँवप ्. Our current logic does not apply 7.1.93 (अनङ् सौ), so we instead derive the wrong form
सखीः. सखी should not be confused with the much more common सिख, whose forms we derive
correctly.

Errors like these are eminently fixable, and we can do so safely given our extensive test suite.

7 Applications
Our program’s errors are currently limited to rare forms, and these errors are decreasing over
time as our test suite expands. Given this work’s current standing and future trajectory, we

98

think it is reasonable to explore some applications of its output.

7.1 As a word generator
We envision using the output of our word generator in one of two ways. Software with limited
resources can use our program as-is and generate words on demand as requested by the user.
For software with more resources, we have found that a finite state transducer (FST) is highly
effective at storing Sanskrit words in a space-efficient way. Briefly, an FST generalizes the prefix
tree and suffix tree into a single data structure, such that items that tend to share prefixes
and suffixes can be stored with less memory. In one early experiment, we found that we could
store tens of millions of Sanskrit words and their basic properties (person, number, etc.) at an
amortized cost of roughly one byte per word. For details on this data structure and the specific
Rust library we use, we refer the reader to Gallant (2015).

7.2 As a prakriyā generator
As a prakriyā generator, our program has obvious relevance to anyone who wants to understand
how the Aṣṭādhyāyī might derive a specific word form. But there are applications beyond this
narrow scope as well.

One tool we envision is an electronic grammar interface that is analogous to an electronic
dictionary. Suppose a student could enter a word into a search interface and see a rule-by-
rule grammatical breakdown of that word. With some translations of key rules, the same
interface could offer explanations to students without a grounding in traditional grammar and
thus comment on important high-level features in a user-friendly way. In doing so, such a tool
could help ameliorate one of the key problems that Sanskrit students face: understanding the
structure and function of a given word.

7.3 As a reference implementation of the Aṣṭādhyāyī
As our program progresses, we expect that others can start to use it as a reference implemen-
tation of the Aṣṭādhyāyī. By this, we mean that our program might become a baseline for new
implementations or an experimental tool for answering certain kinds of grammatical questions.
For example, someone who wishes to model conflict resolution more explicitly might adapt our
API and test suite to a new core implementation. Or, a user might examine the impact of
tweaking a rule’s position or definition by running our program against our full test suite.

Again, we stress that our program takes no perspective on anuvṛtti or conflict resolution, and
it is unclear what value our program could offer for exploring them, if any.

8 Future work

vidyut-prakriya offers several promising directions for future work.
The most promising direction is to continue implementing the rules of the Aṣṭādhyāyī and its

secondary texts, provided that those rules are relevant for generating words. Our main ambition
is to implement all such rules, including Vedic rules (i.e. marked with छदिस, म,े ऋिच, and so
on), the rest of the Uṇādipāṭha, and the Phiṭ Sutras.

Another direction is to tweak our prakriyās and rule order to better conform to the conventions
of modern grammarians. For example, our system derives बभवू by applying rule 6.1.8 (िलिट
धातोरनयासय) before the introduction of व ुँक-्आगम by rule 6.4.88 (भवुो वगु्लुिङ्लटोः), which we have
heard is unusual. Having a robust test case helps us make these kinds of changes with confidence.

A third direction is to add support for non-Pāṇinian usages like उप + आस ्+ वा → उपािसवा
(Pāṇinian उपाय),9 which commonly occur in the Itihasas.

A fourth direction is to allow more user control over our program’s execution flow. Our
program allows this already to a limited extent by allowing the user to disable certain optional

9This form is allowed by 7.1.38 (ाऽिप छदिस), but our program treats such a derivation as Vedic and does not
model that the form is also allowed in the Itihasas.

99

rules. With tighter code discipline, we might be able to extend this behavior to all other rules as
well. Our most ambitious idea in this direction is to use Rust’s rich macro system to inspect our
existing rules and reorder them according to whatever criteria the user desires. Unfortunately,
we expect that supporting this functionality properly would require a near-total rewrite of our
code and its rules, which means that this direction is probably best served by an entirely new
project.

9 Conclusions
This paper has presented a new Pāṇinian word generator that we developed by focusing first on
producing a strong program. Our generator’s speed and performance support a large test suite,
which in turn permits faster progress on implementing rules. Over time, we expect to continue
increasing our program’s test coverage and improving the quality and range of its output.

Despite its limitations, we believe that vidyut-prakriya represents a major step forward for
Sanskrit word generators, and we look forward to creating a program that generates all Pāṇinian
words.

Acknowledgements
The authors wish to thank Neelesh Bodas for feedback on specific prakriyās, and for his work
on the invaluable ashtadhyayi.com; Dhaval Patel for guidance on the design of SanskritVerb;
Madhav Deshpande for his comments and guidance; Shreevatsa Rajagopalan for his work on
vidyut-prakriya’s WebAssembly build and online demo, and for help and advice in preparing
this paper; Vikram Bhaskaran, Prasanna Venkatesh T S, Yash Khasbage, and Sourya Kakarla
for their other contributions to vidyut-prakriya; and Shruthi Raghuraman for her love and
support. All errors are my own.

References
Akshar Bharati, Amba Kulkarni, V Sheeba, and Rashtriya Vidyapeetha. 2006. Building a wide coverage

Sanskrit morphological analyzer: A practical approach. 01.

Neelesh Bodas. 2023. Ashtadhyayi. https://ashtadhyayi.com. Accessed: 2023-09-28.

William Bugden and Ayman Alahmar. 2022. Rust: The programming language for safety and perfor-
mance.

Andrew Gallant. 2015. Index 1,600,000,000 keys with automata and Rust. https://blog.burntsushi.
net/transducers/. Accessed: 2023-10-01.

Pawan Goyal and Gerard Huet. 2016. Design and analysis of a lean interface for Sanskrit corpus
annotation. Journal of Language Modelling, 4(2):145–182, Oct.

Pawan Goyal, Amba Kulkarni, and Laxmidhar Behera. 2009. Computer simulation of Aṣṭādhyāyī:
Some insights. In Gérard Huet, Amba Kulkarni, and Peter Scharf, editors, Sanskrit Computational
Linguistics, pages 139–161, Berlin, Heidelberg. Springer Berlin Heidelberg.

Oliver Hellwig. 2009. SanskritTagger: A stochastic lexical and POS tagger for Sanskrit. In Gérard Huet,
Amba Kulkarni, and Peter Scharf, editors, Sanskrit Computational Linguistics, pages 266–277, Berlin,
Heidelberg. Springer Berlin Heidelberg.

Anand Mishra. 2009. Simulating the Pāṇinian system of Sanskrit grammar. In Gérard Huet, Amba
Kulkarni, and Peter Scharf, editors, Sanskrit Computational Linguistics, pages 127–138, Berlin, Hei-
delberg. Springer Berlin Heidelberg.

Dhaval Patel and Shivakumari Katuri. 2015. Prakriyāpradarśinī - an open source subanta generator.
16th World Sanskrit Conference.

Dhaval Patel. 2023. SanskritVerb. https://github.com/drdhaval2785/SanskritVerb. Accessed:
2023-10-01.

100

S. Prasanna. 2022. Spellchecker for Sanskrit: The road less taken. In Md. Shad Akhtar and Tanmoy
Chakraborty, editors, Proceedings of the 19th International Conference on Natural Language Processing
(ICON), pages 290–299, New Delhi, India, December. Association for Computational Linguistics.

Jivnesh Sandhan, Rathin Singha, Narein Rao, Suvendu Samanta, Laxmidhar Behera, and Pawan Goyal.
2022. TransLIST: A transformer-based linguistically informed Sanskrit tokenizer.

Peter M. Scharf and Malcolm D. Hyman. 2012. Linguistic issues in encoding Sanskrit.

Peter Scharf. 2015. An XML formalization of the Aṣṭādhyāyī. 16th World Sanskrit Conference.

101

Anuprāsa Identifier and Classifier: A computational tool to
analyze Sanskrit figure of sound

Amruta Barbadikar
Department of Sanskrit Studies,

University of Hyderabad
amruta.barbadikar@gmail.com

Amba Kulkarni
Department of Sanskrit Studies,

University of Hyderabad
ambakulkarni@uohyd.ac.in

Abstract

Anuprāsa is a śabdālaṅkāra (figure of sound), in which the poetry is embellished by the
repetitive occurrence of letters.1 The task of processing the decorative language consisting
of such figures is a path not explored in the field of Sanskrit computational linguistics.
This paper discusses a tool that identifies and classifies anuprāsa alaṅkāra. Anuprāsa,
being a figure of sound, makes the least use of semantics. This tool is essentially developed
upon the insights taken from the school of alaṅkāras, especially from the treatise of
ācārya viśvanātha from 14th century AD.

1 Introduction
There is a varied scope for research in the field of Sanskrit computational linguistics. Seg-
mentation(Goyal and Huet, 2013), Morph-analysis and Generation (Kulkarni and Shukl, 2009),
Compound type analysis (Kulkarni and Kumar, 2013; Kulkarni and Kumar, 2011) and Gen-
eration (Satuluri and Kulkarni, 2013), Sentence analysis (Goyal et al., 2009; Kulkarni et al.,
2020) and Generation (Kulkarni and Pai, 2019), Discourse analysis (Kulkarni and Das, 2012),
Translation (Agrawal and Madaan, 2020), etc. tasks are being carried out with extensive efforts.
Most of the tasks are grammar oriented. Other works which attempt to process the rhetoric of
the poetic language are very limited. Except for the Meter identification (Melnad et al., 2015;
Rajagopalan, 2018; Neil, 2023; Terdalkar and Bhattacharya, 2023) and a tool to identify and
classify the yamaka alaṅkāra (Barbadikar and Kulkarni, 2023), the Natural Language Processing
(NLP) tools are far away from processing poetic beauty in Sanskrit.

Although, some examples in languages other than Sanskrit for processing figurative language
can be found. Shutova (2011) presented a computational approach to process metaphor using
statistical methods. Englard (2013) used the rhetorical analysis of text to predict the author. For
Hindi, Audichya and Saini (2021), worked out the alaṅkāras in Hindi to present the hierarchical
structure with a taxonomical listing of alaṅkāras. However, the computational implementation
was not exercised. Naaz and Singh (2022) were able to contribute by presenting three different
tools for Hindi. ‘Text2Mātrā’ produces the laghu and guru mātras for the input, ‘RPaGen’
detects the rhyming quality of the poem and ‘FoSCal’ generates a score according to the quantity
of anuprāsa used over the poem. For Sanskrit, the automatic Meter Identification task has been
worked out, from various applications perspectives, by different scholars. Melnad et al. (2015),
Rajagopalan (2018), Neil (2023), Terdalkar and Bhattacharya (2023) are some of the notable
contributors to the available state-of-the-art Sanskrit Meter Identification systems.

Highly complex language structures, use of intended and implicit meaning, multiple meanings
of a word, multiple words having a similar meaning, and unavailability of useful state-of-the-art
tools are the factors that discourage the processing of decorative language used in poetry. The
tradition of alaṅkāraśastra (poetics) is developed over a long period ranging from the 1st century
AD. The study of figures of speech is an important stream of this tradition. Figures of speech

1Here, the repetition of sounds is desirable. In Sanskrit, there is one to one mapping of sound with the denoting
letter and we compute letters, not sounds. Hence we use the terms letters and sounds interchangeably.

102

are employed by the poets to enhance the beauty of the poetry. Even in the Vedic literature,
the use of such devices can be traced.

ācārya bharata from 1st century AD, known as the father of Indian poetics, in his treatise
nāṭyaśāstra, describes only 4 alaṅkāras. Whereas in kuvalayānanda of appaya dīkṣita
(16th century AD) 125 types of alaṅkāras are enlisted. Sanskrit has a rich tradition of poetics
that is 2000 years old starting from bharata’s nāṭyaśāstra. There are six primary schools
of poetics in Sanskrit viz. rasa, alaṅkāra, rīti, dhvani, vakrokti and auchitya. The school of
alaṅkāra is one of the most cherished schools. It is the ornamentation of poetry through the
specific arrangement of syllables or words or astonishing meanings to enhance the rhetorical
effect. We aim to concentrate on the computational analysis of the provided text essentially
with the alaṅkāra point of view.

According to the school of alaṅkāra, alaṅkāras are mainly of two types viz. śabdālaṅkāra
(figures of sound) and arthālaṅkāra (figures of speech). The combination of these two is called
as ubhayālaṅkāra. The count of alaṅkāras differs from scholar to scholar. Approximately the
count exceeds the number of 50. Some alaṅkāras that use the phonetic or structural beauty may
be easier to identify, but others would be quite tricky to recognize even for the experts in this
field because of the involvement of deeper semantics. As we aim at dealing with these alaṅkāras
from the computational point of view, it is feasible to identify different syntactic constructions
without considering the semantics in śabdālaṅkāras like yamaka and anuprāsa. This research is
aimed at the identification and classification of anuprāsa without considering the meaning.

It is a non-trivial task to analyze highly semantic and aesthetically rich texts without the help
of machine learning or any advanced techniques of NLP. Like the Indian grammatical tradition,
the rhetoric tradition has provided a robust theory upon which a foolproof rule-based system can
be built. Hence, we relied upon a rule-based approach to accomplish this task. As we are dealing
with śabdālaṅkāra, it allowed us to ignore the sense of the poetry making this task easier. We
employ a simple rule-based algorithm after extracting various syntactic clues from the school of
alaṅkāras. For classification purpose, we select the best and most convincing, inclusive scheme
proposed by viśvanātha, a prominent scholar in the tradition of alaṅkāraśāstra.

2 Anuprāsa

Anuprāsa is a śabdālaṅkāra. Essentially, it is the repetition of consonants. This repetition
should be in proximity such that one should remember the prior instance.2 The phenomenon of
anuprāsa is similar to Alliteration.3

Like Yamaka, anuprāsa holds an important place in the alaṅkāras. In the tradition of
alaṅkāraśāstra, anuprāsa was originally introduced as a subtype of yamaka viz. mālā yamaka.4
Yamaka is a repetition of the longer sequence patterns of syllables engaged in the poetry (Bar-
badikar and Kulkarni, 2023), especially in metrical verses, whereas in mālā yamaka repetition
of consonants is considered, which is similar to anuprāsa. In yamaka where repetition of the
longer patterns are engaged in the poetry especially the metrical verses when employed in a
more complex way, this might create a hindrance in the process of experiencing rasa.5 Because
the meaning is different in each repetition, the listener might find it difficult to understand the
meaning of the complete verse and lose interest. But anuprāsa is considered to be a contributor
to the emergence of rasa. Anuprāsa can be traced in any type of text suggesting any kind of
rasa.

2pūrvānubhavasaṃskārabodhinī yadi adūratā ||1.55, kāvyādarśa
3In alliteration, consonant sounds in two or more neighbouring words or syllables are repeated. The repeated

sounds are usually the first, or initial, sounds as in ”seven sisters”, but repetition of sounds in non-initial stressed,
or accented, syllables is also common: ”appear and report.”-”Alliteration.” https://www.merriam-webster.com/
dictionary/alliteration. Merriam-Webster, 2023.

4nānārūpaiḥ svarairyuktaṃ yatraikaṃ vyañjanaṃ bhavet |
tanmālāyamakaṃ nāma vijñeyaṃ paṇḍitairyathā||16.84, nāṭyaśāstra

5tadetatkāvyāntargaḍubhītam| in the vṛtti of 83rd kārikā, 9th chapter, kāvyaprakāśa

103

3 The conceptual development of the types of anuprāsa
Anuprāsa is independent of the form of poetry, that is, it is used in prose format also, like in
kādambarī of bāṇabhaṭṭa. The classifications found are based on the variations in repetitions
in terms of the categories of repeated consonants, number of repetitions, number of repeated
consonants and mood emergence due to the combination of different consonants. Hence, we
do not observe many variations in the definition and classification, but the number of subtypes
considered varies.

In this section, we present a brief overview of various types of anuprāsa furnished by different
scholars. bharata, known as the first scholar of the tradition, has enlisted only four alaṅkāras
namely yamaka, upamā, rūpaka and dīpaka among which yamaka was the only figure of sound.
Mālā yamaka, a subtype of yamaka can be considered as the inspiration behind anuprāsa.
Example of mālā yamaka given by bharata is,

asau hi rāmā rativigrahapriyā
rahaḥpragalbhā ramaṇaṃ manogatam |
ratena rātriṃ ramayet pareṇa vā
na cedudeṣyattaruṇaḥ paro ripuḥ ||16.86, nāṭyaśāstra

Other scholars after bharata considered anuprāsa as an individual alaṅkāra and classified it
from different perspectives. bhāmaha provided only two types, whereas bhoja extended the
count to 6 types. Some scholars being excessively analytical tried to increase the count even
more.

bhāmaha (6th century AD) for the first time put forward anuprāsa as a separate alaṅkāra in
his treatise kāvyālaṅkāra. bhāmaha declares the arrangement of similar letters as anuprāsa.6
Moreover, he provides two types of anuprāsa. One is grāmyānuprāsa. As the name suggests, the
repetition of letters without any pattern or elegance is grāmyānuprāsa. Learned people assume
it as an ordinary repetition.7 For example,

sa lolamālānīlālikulākula galo balaḥ | 2.6, kāvyālaṅkāra

The another type is lāṭānuprāsa. It is a repetition of a complete pada (word). But the meaning
of pada does not change. For example,

dṛṣṭiṃ dṛṣṭisukhāṃ dhehi candraścandramukhoditaḥ | 2.8, kāvyālaṅkāra

‘Lāṭa’ is a name of a geographical region. Poets belonging to the region ‘Lāṭa’ used to employ
this kind of repetition in plenty. Most of the scholars in the tradition included lāṭānuprāsa in
the classification of anuprāsa. Lāṭānuprāsa shows similarity with yamaka alaṅkāra. The only
difference is that, in yamaka the repeated word or the sequence of sounds should possess different
meanings in each repetition.

After bhāmaha, daṇḍin (8th century AD) added the clause of proximity to anuprāsa. Accord-
ing to daṇḍin the repetition of letters such that the listener remembers the previous occurrence
of the repeated letter is called anuprāsa.8 He added that the repetition in anuprāsa nourishes
the rasa.

udbhaṭa (9th century AD) introduced chekānuprāsa in his work kāvyālaṅkāra-sāra-
saṅgraha (8th AD). Chekānuprāsa is one repetition of two groups of consonants.9 Here, the
sequence may not be the same. The example given is as follows,

sa devo divasān ninye tasmin śailendrakandare |
gariṣṭhagoṣṭhī-prathamaḥ pramathaiḥ paryupāsitaḥ || 3.3, kāvyālaṅkāra-sāra-
saṅgraha

6sarūpavarṇavinyāsamanuprāsaṃ pracakṣate| 2.5, kāvyālaṅkāra
7grāmyānuprāsamanyttu manyante sudhiyo’pare| 2.6, kāvyālaṅkāra
8pūrvānubhavasaṃskāra-bodhinī yadyadūrata| 1.55, kāvyādarśa
9chekānuprāsastu dvayordvayoḥ susadṛśoktikṛtau| 3.2, kāvyālaṅkāra-sāra-saṅgraha

104

In addition to this, vṛttyanuprāsa was also defined. Here, the combination of the repeated con-
sonants is considered. According to it, three vṛttis are defined viz. paruṣa (harsh), upanāgarikā
(soft) and grāmyā (other than the prior two). Again, the count and the definitions of vṛttis vary
from scholar to scholar.

bhoja from 11th century conducted a vast review on this alaṅkāra. In addition to
vṛttyanuprāsa and lāṭānuprāsa he added 4 more types viz. śrutyanuprāsa, varṇānuprāsa,
padānuprāsa and nāma-dvirukti. Varṇānuprāsa is similar to chekānuprāsa. Also, padānuprāsa
and nāma-dvirukti can be included into lāṭānuprāsa.

jayadeva (12th century AD) in candrāloka introduced two types of anuprāsa viz.
sphuṭānuprāsa, which is the repetition of consonants within a pāda or a half of a pāda and
arthānuprāsa, where the repetition of consonants occur in the two words which are connected
semantically. For example,

candanaṃ khalu govinda-caraṇa-dvandva-vandanam| 5.6, candrāloka

Here, the two words ‘candanam’ and ‘govind-caraṇa-dvandva-vandanam’ are connected with the
‘upamāna-upameya’ relation and possess the repetition of consonants ‘nd’.

The criteria for classifying anuprāsa into different types is basically the number of repetitions,
consideration of the order of the repeated letters and what letters are being repeated. Focusing
on these points different classifications are framed. Due to such finite dimensions of classification,
we observe a limited number of types. Also, similar kinds of types are explained in various other
classification schemes.

For the tool development, we follow one comprehensive classification. viśvanātha’s anuprāsa
classification provided in his treatise sāhityadarpaṇa has five classes that cover the extract
of all the other interpretations available. Categories proposed by the rhetoricians like daṇḍin,
udbhaṭa, vāmana, rudraṭa, mammaṭa, jayadeva, bhoja, etc. are covered under the
umbrella of the classification of viśvanātha.

4 Viśvanātha’s classification

The tenure of viśvanātha (14th century AD) comes in the later part of the tradition of
alaṅkāraśāstra. He provides a well-defined and comprehensive theory for the classification of
anuprāsa which facilitates the clarity for implementation. viśvanātha’s classification includes
other prominent classifications. Moreover, it uses widely accepted nomenclature. According to
him, the anuprāsa is classified into 5 sub-classes. The examples for these 5 types are taken from
10th pariccheda of sāhityadarpaṇa.

1. Chekānuprāsa
Chekānuprāsa is the double occurrence of consonants with the same sequence. In each
repetition, vowel endings may vary. In the example given below, one repetition of ‘n-d-h’,
‘v-r’ and ‘p-v-n’ is in the same order. That means the order of the repeated consonants
is not changed. The repetition of ‘v-r’ is not changed to ‘r-v’ irrespective of the changing
vowels in between.

ādāya bakulagandhānandhīkurvan pade pade bhramarān |
ayameti mandamandaṃ kāverīvāri-pāvanaḥ pavanaḥ||

2. Vṛttyanuprāsa
Vṛtti is the mood or emotion. It is defined as the arousal of a specific mood resulting
from a certain combination of letters. Repetition of one or many consonants in any order
to produce a specific mood (vṛtti) is called vṛttyanuprāsa. The emotional effect differs
according to the repetitive sound pattern and the combination of the letters used. This
effect should complement the actual rasa of the poetry.

105

unmīlanmadhugandhalubdhamadhupavyādhūtacūtāṅkura-
krīḍatkokilakākalīkalakalairudgīrṇakarṇajvarāḥ |
nīyante pathikaiḥ kathaṃ kathamapi dhyānāvadhānakṣaṇa
prāptaprāṇasamāsamāgamarasollāsairamī vāsarāḥ ||

In this example, the first foot has multiple repetitions of the consonant ‘dh’. In the second
foot, there is repetition of the consonants ‘k’ and ‘l’ in any order. The third foot has the
repetition of ‘dh’ only once. The last foot has the repetition of ‘p’, ‘r’, ‘s’ and ‘m’ in different
orders.

3. Śrutyanuprāsa
Śrutyanuprāsa is the repetition of a group of consonants with a similar manner of articula-
tion. According to daṇḍin it also is beneficial to the rasa.10 These are further sub-classified
into five classes according to the place of articulation.
(a) Kaṇṭhya (Velar) - {k, kh, g, gh, ṅ, h}
(b) Tālavya (Palatal) - {c, ch, j, jh, ñ, y}
(c) Mūrdhanya (Retroflex) - {ṭ, ṭh, ḍ, ḍh, ṇ, r, ṣ}
(d) Dantya (Dental) - {t, th, d, dh, n, l, s, v}
(e) Oṣṭhya (Labiel) - {p, ph, b, bh, m, v}

For example, the following verse
dṛśā dagdhaṃ manasijaṃ jīvayanti dṛśaiva yāḥ |
virūpākṣasya jayinīstāḥ stumo vāmalocanāḥ ||

has a repetition of Palatal varṇas ‘j’ and ‘y’.

4. Antyānuprāsa
Repetition of syllables at the end of the padas (words) or at the end of the foot. Specifically,
after the penultimate vowel that is the last but one vowel of the pāda or pada. the For
example,

keśaḥ kāśastabakavikāsaḥ kāyaḥ prakaṭitakarabhavilāsaḥ |
cakṣurdagdhavarāṭakakalpaṃ tyajati na cetaḥ kāmamanalpam ||

In this example, the ends of the first and second feet match, similarly the ends of the third
and fourth feet.

5. Lāṭānuprāsa
Lāṭānuprāsa is not just the repetition of the consonants but the repetition of a word (pada)
with similar meaning but different implications. This kind of anuprāsa is similar to yamaka
as repetitions are considered for longer syllable sequences. Following is an example of
lāṭānuprāsa.

smerarājīvanayane nayane kiṃ nimīlite |
paśya nirjitakandarpaṃ kandarpavaśagaṃ priyam ||

In the above given example, the words ‘nayane’ (meaning eyes) and ‘kandarpam’ (meaning
desire for love) are repeated with the same sense. The words are sometimes an independent
word or a part of a compound word. According to the role of the word in the sentence, the
implication changes. The first appearance of nayane in smerarājīvanayane (meaning - a
woman with lotus like eyes) is in the form of an element of the compound, and contributes
its meanings to form a meaningful compound. The other occurrence of ‘nayane’ is an inde-
pendent word to give the meaning as ‘two eyes’. Similarly in ‘kandarpam’, both repetitions
possess the same meaning but the implication differs in each occurrence.

10yayākayācicchrutyāyatsamānamanubhūyate|
tadrūpāṃhipadāsattiḥsānuprāsārasāvahā|| 1.52, kāvyādarśa

106

Type Count Order Unit Position in the input

lāṭa ≥ 2 same word next to each other or with a few
interventions.

cheka 2 same sequence of syllables without vowels anywhere within a proximity of
8 + 2∗ length of syllable sequence.

vṛtti a)> 2
b)≥ 2

any a) sequence of syllables without vowels
b) a consonant

anywhere within a proximity of
8 + 2∗ length of syllable sequence.

śruti ≥ 2 any syllables from the same class within a proximity of 8 syllables.
antya ≥ 2 same syllables after the second last vowel. end of feet and words.

Table 1: Differentiation from the implementation point of view

5 Implementation of Anuprāsa Identifier and Classifier

From the definitions of various anuprāsas, we note that some types have more stringent condi-
tions than others. Hence, the examples that satisfy more stringent conditions may also satisfy
less stringent conditions and thus can be categorised under two different types of anuprāsa. For
example, lāṭānuprāsa demands that the repetition is of words and not syllables. Chekānuprāsa
demands the repetition of syllables in the same order. Thus, any example of lāṭānuprāsa is also
potentially an example of chekānuprāsa as well. However, due to the stringent conditions of
lāṭānuprāsa, it is appropriate to classify such an instance only under lāṭānuprāsa. A similar
situation exists with other pairs as well. In order to decide the proper exclusive sequence in
which these anuprāsas should be identified, we look at the necessary conditions for each of them.

From the table 1, we understand that the natural order for identifying the anuprāsa type is
lāṭa, cheka and vṛtti. The conditions of śruti and antya type of anuprāsa do not clash with any
other classes and hence can be identified either in the beginning or at the end.

We use the frequencies of n-grams11 for identifying lāṭānuprasa and frequencies of n-grams of
the sequence of letters ignoring the vowels and their positions identifying the chekānuprāsa and
the frequencies of n-grams of consonants for identifying vṛttyanuprāsa and only consonants hav-
ing the same place of articulation and their positions in the input for identifying śrutyanuprāsa.
The pādāntyānuprāsa is identified by looking at rhymes at the end of the pādas. For padān-
tyānuprāsa, we consider the rhyming in the space-separated word endings.

Unicode Devanagari is unsuitable for processing and identifying the n-gram and consonant
frequencies since the basic units in Unicode are a mix of consonants with a vowel ‘a’ inherent
in them. Hence we convert the input internally into WX notation12 and process it. In addition
to Devanagari and IAST schemes, we also accept input in various other transliteration schemes
such as Velthuis, SLP, Kyoto Harward, WX notation, etc.

Normalization of the input is an important step in processing. To analyse antyānuprāsa, the
daṇḍas (‘|’) and spaces to mark the word and the foot boundary are preserved. For other types,
the normalization of various elements is defined below.

• Spaces :
In the oral tradition, the spaces between the words do not carry any significance. Anuprāsa
deals with the sound patterns, and as such, we ignore the spaces between the words.

• Anunāsikyas :
Since the anuprāsa is identified based on sound patterns, the variations in spelling need
to be taken care of. Sanskrit allows some spelling variations concerning nasalization. All
the homogenous nasal stops are converted into anusvāras. The anusvāra when followed by
consonants, can be converted into homogenous nasal stop viz. ṅ, ñ, ṇ, n and m.

11The sequences of letters of length ‘n’ are called n-grams.
12https://en.wikipedia.org/wiki/WX_notation

107

For example, ‘aṃbuja’ versus ‘ambuja’, ‘aṃka’ versus ‘aṅka’. Similarly, the nasal stop ‘m’
at the end of a word is written as an anusvāra when it is followed by a word starting with
a consonant. We normalize all the nasal stops to anusvāra.

• Special characters:
(1) A special character that needs special attention is the avagraha. The avagraha is a
writing convention to indicate the elided ‘a’ during the sandhi operation. Since for the
purpose of anuprāsa identification, we look at the sandhied text only, we ignore the avagraha
if it is present in the input text.
(2)Similarly, the daṇḍa (‘|’) used to denote the sentence-end, or in the case of a verse, to
denote the end of two pādas. Except for pādāntyānuprāsa, the daṇḍa is also ignored.

The broad algorithm is as follows.
• Read the sequence of letters.

• Convert it to WX notation.

• Check for pādāntyānuprāsa by dividing the input into 4 equal parts and comparing the
sequence of letters after the second last vowel at the end of each part.

• Check for padāntyanuprāsa by comparing the word endings from the penultimate vowel to
the end of the consecutive words. If the sequence of letters matches at least in two words
mark the repeated sequence as padāntyānuprāsa.

• Get the n-grams (n ≥ 2) along with their positions with and without vowels.

• Remove all the small n-grams that can be subsumed by the large n-grams with matching
positions (index).

• If the frequency of n-gram with vowels is more than 1, mark it as lāṭānuprāsa.

• Else if the frequency of n-grams without vowels is 2, mark such sequences as chekānuprāsa.

• Else if the frequency of n-grams (n ≥ 2) without vowels is greater than 2 and if the frequency
of single consonants is greater than or equal to 2 the n-gram or the consonants are marked
as vṛttyanuprāsa.

• If the frequency of consonants belonging to the same class is greater than 2, mark them as
śrutyanuprāsa of the type to which these consonants belong.

The use of else if ensures that the classification prefers a type with a more stringent definition
than the others.

As a general rule in anuprāsa, the repetitions should not be far away to make the reader
forget the previous occurrence. If the distance is large, the instance will not be able to produce
amusement for the reader. To strike out such cases we have added one function in which
the distance is calculated through the indices of the repeated consonants. For a single letter
repetition, the maximum distance is considered to be 4 to 5 akṣaras, that is 8 to 12 letters
approximately, considering the frequent conjuncts in Sanskrit.

6 Interface
We have designed a user-friendly interface to access this tool. This is an integrated tool for
both yamaka and anuprāsa (see figure 1). User can provide their input text in various available
encodings. Figure 1 shows all five types of anuprāsa highlighted in red colour corresponding
to the input given by the user. The highlighted sequence facilitates the user with a better
comprehension of the alaṅkāra and helps the user understand the difference between each type
of anuprāsa effectively and easily. The interface is available in the ‘tools’ section at https:
//sanskrit.uohyd.ac.in/scl/

108

Figure 1: Alaṅkāra Identifier and Classifier: Anuprāsa input

Figure 2: Alaṅkāra Identifier and Classifier: Anuprāsa output

109

7 Evaluation
We tested our tool on a data set of 70 ślokas and 10 sample prose. The selected ślokas are
primarily given as examples of anuprāsa in the śāstric texts and some from the raghuvaṃśa of
kālidāsa. The prose examples were passages consisting of 2 to 3 sentences from bāṇabhaṭṭa’s
kādambarī. Most of the examples contained more than one type of anuprāsa. This tool
could successfully handle these anuprāsa instances. Since the three classes of anuprāsa viz.
lāṭānuprāsa, chekānuprāsa, and vṛttyanuprāsa relax the conditions as we go from the first one
to the third, the latter is a strict superset of the previous one. Hence, a pattern satisfying the
conditions of lāṭānuprāsa, though it is an example of chekānuprāsa and vṛttyanuprāsa, is shown
only under the lāṭānuprāsa. Similarly, the patterns satisfying the conditions for chekānuprāsa
are not again displayed under vṛttyanuprāsa. Similarly, only those patterns that are not covered
under lāṭānuprāsa and chekānuprāsa, are considered for vṛttyanuprāsa.

Figure 3: The cascade effect in lāṭānuprāsa, chekānuprāsa and vṛttyanuprāsa

Since this tool is not supported with word segmenter or meter identifier, for analysis of an-
tyānuprāsa it completely relies on the spaces and the daṇḍas to mark the pada and pāda bound-
ary. If the user has not provided the daṇḍa or spaces in the appropriate place, the tool is not
able to identify antyānuprāsa.

8 Conclusion
We have discussed a tool useful for the identification and classification of Sanskrit poetry focusing
on anuprāsa. This can be taken as a booster for figurative language processing in Sanskrit and
other Indian languages as well. The concept of anuprāsa along with its classification is adopted
by other Indian languages like Hindi, Marathi, Telugu, Kannada, etc. The same model with the
necessary amendments can be deployed for the identification and classification of anuprāsa in
modern Indian languages as well.

This module is extendable for other classifications presented in the tradition. The
vṛttyanuprāsa, a type of anuprāsa can be researched extensively to identify rasa depending
upon the repetition of clusters of consonants.

‘Anuprāsa Identifier and Classifier’ is useful for teaching this figure of sound by presenting a
demonstration of different examples. While creating a masterpiece of poetry, a good poet does
not deliberately enforce the figures in the poetry. Such upcoming masterpieces in Sanskrit can
be tested with this tool.

References
Ācārya Viśveśvara. 2017. Kāvyaprakāśa. jñānamaṇḍala Limited, Varanasi.

110

Prateek Agrawal and Vishu Madaan. 2020. A Sanskrit to Hindi language machine translator using rule
based approach. In Proceedings of the 17th International Conference on Natural Language Processing
(ICON): System Demonstrations, pages 13–15, Patna, India, December. NLP Association of India
(NLPAI).

Milind Kumar Audichya and Jatinderkumar R. Saini. 2021. Towards Natural Language Processing
with figures of speech in Hindi poetry. In International Journal of Advanced Computer Science and
Applications.

V. Balasubramanyam. 2017. Citram - Poetry of Sound, volume 1. Rashtriya Sanskrit Sansktan, New
Delhi.

Amruta Barbadikar and Amba Kulkarni. 2023. Yamaka identifier and classifier: A computational tool
for the analysis of Sanskrit figure of sound (upcoming).

Satyadev Chowdhary. 1965. Kāvyālaṅkāra. Vasudev Prakashan, Delhi.

Durgaprasad and Kashinath Parab. 1886. Kāvyālaṅkāraḥ. Nirnayasagar Press, Mumbai.

Benjamin Englard. 2013. A rhetorical analysis approach to Natural Language Processing. In ArXiv.

Edwin Gerow. 1971. A Glossary of Indian Figures of Speech. Mouton & Co. N. V. Publishers, Hague.

Manomohan Ghosh. 1951. The Nāṭyaśāstra, volume 1. Asiatic Society of Bengal, Calcutta.

Pawan Goyal and Gérard Huet. 2013. Completeness analysis of a sanskrit reader. In Proceedings, 5th
International Symposium on Sanskrit Computational Linguistics. DK Printworld (P) Ltd.

Pawan Goyal, Vipul Arora, and Laxmidhar Behera. 2009. Analysis of sanskrit text: Parsing and se-
mantic relations. In Gérard Huet, Amba Kulkarni, and Peter Scharf, editors, Sanskrit Computational
Linguistics, pages 200–218, Berlin, Heidelberg. Springer Berlin Heidelberg.

Mari Hattori. 1997. On the rhyme (yamaka) in Sanskrit poetics. Annals of the Bhandarkar Oriental
Research Institute, 78(1/4):263–274.

Amba Kulkarni and Monali Das. 2012. Discourse analysis of Sanskrit texts. In Proceedings of the
Workshop on Advances in Discourse Analysis and its Computational Aspects, pages 1–16, Mumbai,
India, December. The COLING 2012 Organizing Committee.

Amba Kulkarni and Anil Kumar. 2011. Statistical constituency parser for Sanskrit compounds. In ICON
2011.

Amba Kulkarni and Anil Kumar. 2013. Clues from Aṣṭādhyāyī for compound type identification. In 5th
international SCLS 2013.

Amba Kulkarni and Madhusoodana Pai. 2019. Sanskrit sentence generator. In Proceedings of the
6th International Sanskrit Computational Linguistics Symposium, pages 1–13, IIT Kharagpur, India,
October. Association for Computational Linguistics.

Amba Kulkarni and Devanand Shukl. 2009. Sanskrit morphological analyser: Some issues. In the
Festscrift volume of Bh. Krishnamoorty, Indian Linguistics.

Amba Kulkarni, Pavankumar Satuluri, Sanjeev Panchal, Malay Maity, and Amruta Malvade. 2020.
Dependency relations for Sanskrit parsing and treebank. In Proceedings of the 19th International
Workshop on Treebanks and Linguistic Theories, pages 135–150, Düsseldorf, Germany, October. As-
sociation for Computational Linguistics.

Keshav Melnad, Peter Scharf, and Pawan Goyal. 2015. Meter identification of Sanskrit verse. In Sanskrit
Syntax: Selected Papers Presented at the Seminar on Sanskrit Syntax and Discourse Structures.

Shriramachandra Mishra. 1996. Kāvyādarśa. Chowkhamba Vidyabhavan, Varanasi.

Komal Naaz and Niraj Kumar Singh. 2022. Design and development of computational tools for analyzing
elements of Hindi poetry. In IEEE Access.

Tyler Neil. 2023. Skrutable: Another step toward effective Sanskrit meter identification. In Proceedings
of the Computational Sanskrit & Digital Humanities: Selected papers presented at the 18th World
Sanskrit Conference.

111

S. Rajagopalan. 2018. A user-friendly tool for metrical analysis of Sanskrit verse. In Computational
Sanskrit & Digital Humanities, Selected papers presented at the 17th World Sanskrit Conference.

C. Shankara Rama Sastri. 1956. Kāvyālaṅkāra of Bhāmaha. The Sri Balamanorama Press, Mylapore,
Madras.

Pavankumar Satuluri and Amba Kulkarni. 2013. Generation of sanskrit compounds. In ICON 2013.

Pandit Rangacharya Raddi Shastri. 1938. Kāvyādarśa. Bhandarkar Oriental Research Institute, Pune.

Shrikrishnamoori. 1909. Kāvyālaṅkārasūtravṛttiḥ. Sri Vani Vilas Press, Srirangam.

Ekaterina V. Shutova. 2011. Computational approaches to figurative language.

Krishnan Sriram, Amba Kulkarni, and Gérard Huet. 2023. Validation and normalization of DCS corpus
and development of the Sanskrit heritage engine’s segmenter. In Proceedings of the Computational
Sanskrit & Digital Humanities: Selected papers presented at the 18th World Sanskrit Conference, pages
38–58, Canberra, Australia (Online mode), January. Association for Computational Linguistics.

Renate Söhnen. 1995. On the concept and presentation of ”yamaka” in early indian poetic theory.
Bulletin of the School of Oriental and African Studies, 58(3):495–520.

Hrishikesh Terdalkar and Arnab Bhattacharya. 2023. Chandojnanam: A Sanskrit meter identification
and utilization system. In Proceedings of the Computational Sanskrit & Digital Humanities: Selected
papers presented at the 18th World Sanskrit Conference.

Rudradev Tripathi. 1972. Sanskṛta Sāhitya me śabdālaṅkāra. Shri Lal Bahadur Shastri Kendriya Sanskrit
Vidyapeeth, Delhi.

Vrajaratnadas. Kāvyādarśa. Vrajaratnadas, Shrikamalamani Granthamaka Karyalaya, Kashi.

112

START: Sanskrit Teaching, Annotation, and Research Tool -
Bridging Tradition and Technology in Scholarly Exploration

1Anil Kumar, 2N. Shailaja, 3Amba Kulkarni
Department of Sanskrit Studies

University of Hyderabad
{1anil.lalit22, 2shailajanakkawar}@gmail.com,

3ambakulkarni@uohyd.ac.in

Abstract

Sanskrit, a language renowned for its profound literature and philosophical insights, has
remained a cornerstone of ancient wisdom. In this digital age, the fusion of tradition
and technology has led to the emergence of transformative tools such as the Sanskrit
Teaching, Annotation, and Research Tool (START), being developed by the Department
of Sanskrit Studies, University of Hyderabad. This research paper delves into the intri-
cate features, methodologies, and implications of START in reshaping the landscape of
Sanskrit research and teaching. By exploring its advanced annotation capabilities, collab-
orative potential and broader impact on the digital humanities, this paper demonstrates
how START is redefining the boundaries of scholarly exploration and analysis.

1 Introduction
The timeless wisdom present within Sanskrit texts has fascinated scholars for generations. There-
fore, in spite of the literature being several centuries old, there is a continuously increasing
population interested in understanding these texts. Several online computational tools exist
that assist the learners in understanding the Sanskrit texts and enhancing their grammar. The
traditional commentaries in the form of a book are being gradually replaced by E-readers. These
E-readers were developed semi-automatically for popular texts such as Sankṣepa Rāmāyaṇam,
ŚrimadBhagvad Gītā and Śiśupālavadham.1 Recently there was a similar effort to transform
the Kramapāṭha reader of the Rāmopākhyāna to an E-reader with a search facility(Scharf and
Chauhan, 2023), whhich was inspired by from its printed version. These E-readers are not only
useful for the readers, but also are useful for building and enhancing NLP tools, since they
provide an annotated gold data for ML techniques.

Saṁsādhanī and the Sanskrit Heritage Platform, though being used extensively for learning
and teaching Sanskrit, and also for developing annotated gold data for various tasks such as
segmentation, morph analysis, dependency parsing, etc. a need was felt to develop a better user
interface and management of various tools and resources to cater to the diverse needs of the
students, teachers, indology researchers, and computational linguists.

With the penetration of Digital Technology in every sphere of life, no wonder that the teaching
and learning is affected the most. Sanskrit is no exception. During COVID-19, there was a surge
in the learners of Sanskrit and this gave a boost to several online teaching programmes. The
online computational tools for Sanskrit also saw an upward surge in its usage since many online
courses either recommended these tools or the students in search of online help found them to
be supplementary to their online courses.

One such course was also offered by Indian Institute of Technology, Roorkee in collaboration
with Sanskrit Bharati where the online Sanskrit Computational Tools Saṁsādhanī and Sanskrit
Heritage Platform were introduced to the students pedagogically. While the teachers followed the
traditional methods of teaching, the students were encouraged to use the tools for completing the
exercises. Pāṇini’s grammar is useful for generating the word forms, joining the words following

1https://sanskrit.uohyd.ac.in/scl/e-readers

113

the sandhi rules, or deciding the appropriate case suffix for a noun, etc.. But for analysis and
understanding the text, it is not directly useful, since now the rules are to be used in a reverse
way which may also lead to non-determinism. It is here the students found these online platforms
useful. However there were several practical difficulties students faced while using these tools.
The current platform was not mobile friendly, while most of the students prefer to use the tools
on smartphones rather than on a laptop or a desktop. Many of them did not have any access to
computing devices other than a mobile. Second major problem was due to the multiple solutions
provided by the machine. Readers would like to see only one output rather than many, in the
beginning.

Similar course was offered again by the University of Hyderabad in 2022 to teach Sanskrit
from scratch using these computational tools. The aim of this course was to see how complete
these tools are from a pedagogical perspective. This course, followed by a workshop for Sanskrit
teachers at the University of Hyderabad in 2023 helped us to identify the features teachers and
students would like to have in the display.

Another use of these tools is to develop a dependency tree bank for Sanskrit. The Sanskrit
parser produced several possible dependency trees. While in most of the cases only one or two
edges of the graph would go wrong, the interface for correcting the solution was not user friendly
and hence annotators faced problems. Problems were also due to the compatibility issues among
the devices, browsers, operating systems etc.

Yet another need was of the Indology researchers and computational linguists working with
knowledge base or grammar based approaches. They needed a search facility over the annotated
data. The existing interface for E-readers is developed targeting the readers, and hence does
not provide a good search facility to the researchers.

These limitations of the tools from user’s perspective, and the requirement of a large size
corpus for the use of Machine Learning approaches led us to think of a platform that can be
used simultaneously for learning, teaching, corpus annotation and research.

In the next section, we survey various efforts in these areas. In the third section, we describe
the platform START which is developed to cater to the needs described above, describing various
utilities available. Finally we describe the architecture of the platform.

2 Related work
To the best of our knowledge there does not exist any single platform that caters to the needs
of diverse users such as students, teachers, computational linguists and Indologists. However,
there are platforms that are designed towards serving some of them. We brief a few important
ones.

• Perseus Digital Library:2 This is an open-source project mainly focussing on Greek,
Latin and Arabic providing a suite of services for interacting with textual collections. It
provides an integrated reading environment with support of linguistic tools such as lem-
matizer and morphological analyser with a link to the dictionaries that helps a user in
contextual reading. Sanskrit Library 3 and Heritage Platform4 started with a similar ser-
vices. Recently two websites Vedaweb5 and Ambuda6 were developed which provide similar
services for Sanskrit as are provided by the Perseus website. The first one is focussed on
Rigveda and the second one on classical Sanskrit texts.

• The Sanskrit Heritage Platform:7 This platform provides various Sanskrit compu-
tational tools such as segmentation, morphological analysis and generation and a shallow

2http://www.perseus.tufts.edu/hopper
3https://sanskritlibrary.org
4https://sanskrit.inria.fr
5http://vedaweb.uni-koeln.de/rigveda
6http://ambuda.org
7http://sanskrit.inria.fr

114

parser with lexicon linked to the bilingual Sanskrit-French and Sanskrit-English dictionaries.
In addition, it has a well curated semi-automatically segmented corpus with lexicon driven
and linked morphological analysis. It also hosts various short lessons targeted towards the
new learners of Sanskrit, with complete word level analysis linked to the dependency parser
of University of Hyderabad.

• Saṁsādhanī:8 This platform developed at the University of Hyderabad offers various
computational linguistic tools such as sandhi joiner, sandhi splitter, morphological anal-
yser and generator, sentential parser, and Sanskrit-Hindi Translation, and lexical resources
such as Amarakośa and Dhātuvṛttis. This platform is linked to the services of Sanskrit
Heritage Platform, and provides an integrated environment for analysis of Sanskrit texts
complementing the services.

• DCS:9 The Digital Corpus for Sanskrit website is designed for text historical research in
Sanskrit linguistics and philology. Users can search for lexical units and their collocations
in a huge corpus of about 650,000 lines which is sandhi split as well as morphologically
tagged.

• SanskritShala:10 It is the recent addition to this list which provides a Neural Sanskrit
NLP Toolkit with Web-Based Interface for Pedagogical and Annotation Purposes(Sandhan
et al., 2023).

• Sangrahaka: This is an open-source tool that supports collaborative annotation and is
tailored for Indian languages, enhancing regional NLP efforts(Terdalkar and Bhattacharya,
2021).

There are numerous platforms available for text annotations such as GATE, BRAT, INCEp-
TION, WebAnno, Bella, etc. As we will see below, these platforms are not geared towards
teaching and research. Their sole aim is to facilitate annotation.

• GATE11: An open-source platform for text engineering that supports various types of
annotations, such as named entities, relations, events, opinions, and coreference. GATE
also provides a graphical user interface, a scripting environment, and a plugin architecture
for extending its functionality.

• BRAT12: A web-based tool for collaborative text annotation that can handle span entities,
relations, and attributes. BRAT also allows for the configuration of custom annotation
schemes and visualizations.

• Doccano: A web-based tool for text annotation that supports sequence labeling, text
classification, and sequence-to-sequence tasks. Doccano also offers features such as user
management, project management, and data import/export(Nakayama et al., 2018).

• INCEpTION13: A web-based tool for intelligent text annotation that integrates machine
learning and active learning techniques to assist human annotators. INCEpTION supports
various types of annotations, such as named entities, relations, events, concepts, and senti-
ments.

8https://sanskrit.uohyd.ac.in/scl
9http://www.sanskrit-linguistics.org/dcs

10http://cnerg.iitkgp.ac.in/sanskritshala/
11https://gate.ac.uk/
12https://brat.nlplab.org/index.html
13https://inception-project.github.io/

115

• WebAnno14: WebAnno is an open-source web-based tool for annotating text data in
natural language processing (NLP) tasks. It offers customizable schemas, collaborative
annotation, and integration with NLP pipelines for efficient labeling.

• Bella15: A JavaScript-based tool for natural language processing tagging that supports
part-of-speech tagging, chunking, named entity recognition, and dependency parsing. Bella
also allows for the creation of custom tag sets and rules.

2.1 Why a new Platform?
While there are several of these platforms that may be extended/adapted towards our goals, we
decided to go for a totally new platform due to the following considerations.

• None of these platforms is really geared towards teaching, and building E-readers.

• At the backend we use rule based tools which produce all grammatically possible solutions,
which are prioritized using some heuristics or probabilistic models. We would like to provide
access to all these analyses should an annotator finds the displayed analysis to be wrong.

• We also would like to use the annotated data to develop E-readers automatically. For
languages like Sanskrit, where one needs a good support of lexical resources and grammar
tools to understand any Sanskrit text, the annotated texts come handy for the readers with
all necessary information at one place.

These reasons motivated us to develop this platform.

3 START: Sanskrit Teaching, Annotation and Research Tool
START is a web based tool that provides

1. A dashboard for learning and teaching Sanskrit
With the help of various online computational tools such as sandhi joiner and sandhi splitter,
morphological analyser and generator, sentential analyser and generator, etc. available on
Saṁsādhanī Platform integrated with Sanskrit Heritage Platform, this dashboard provides
an environment for the learning as well as teaching. The user interfaces for each of these
tools are developed following the pedagogical requirement of a teacher. We describe them
in section 3.2 in detail.

2. A dashboard for annotation and E-reader builder
This dashboard facilitates an annotator to annotate any Sanskrit text of his choice. The
Saṁsādhanī and Sanskrit Heritage Platforms provide the back-end support. Detailed de-
scription of this is provided in section 3.1.

3. User management System (UMS)
START provides a User Management System (UMS) which emerges as a fundamental tool
that empowers START to seamlessly control user access, streamline administrative tasks,
and ensure a smooth user experience. It provides User Registration and Onboarding, Role-
Based Access Control, Password Management and Activity Monitoring and Auditing. Table
1 explains the roles.

4. Encoding Management
The character encoding plays a crucial role in ensuring accurate representation and seam-
less exchange of textual information, especially in the case of Sanskrit, since it is written
in several Indian scripts as well as specially designed Roman script, and also in various

14https://webanno.github.io/webanno/
15https://github.com/dennybritz/bella

116

Roles Description
Admin User Account Creation and Deletion, User Role and Permis-

sions Management, User Support, Monitoring and Report-
ing

Editor Group Creation and Management, Monitoring and Report-
ing

Annotator Annotation Creation, Viewing Content, Monitoring and Re-
porting

Viewer Viewing Content, Read-only Access, Monitoring and Re-
porting, Limited Interaction

Table 1: Different Roles in User Management System

transliteration schemes, especially in electronic format. The Encoding Management of
START provides users to access the data in different Roman transliteration schemes such
as WX, IAST, Velthuis, Harvard Kyoto, and also various Indian scripts such as Devanagari,
Telugu, Oriya, etc. The encoding management ensures that the data gets stored uniformly
in WX notation and is displayed in the script or transliteration scheme of user’s choice,
remembering the user’s choice across sessions. (See Fig 1).

5. Content Management
START also provides a robust Content Management system which is evolved to not only
organise and display content but also provide users with the ability to add, delete, and edit
data. With this facility, one can import the texts from existing websites, and then edit
according to the version one is following.

6. A dashboard for Indologists16

The data in the content management system and also the one annotated will also be ac-
cessible to the Indology researchers through this dashboard. This dashboard will have an
advanced search facility with grammatical and lexical queries. Further, this data can also
be exported to any of the standard formats such as University of Hyderabad tagged data
format, or CONLLU format etc. for the use of Machine Learning algorithms.

The Mind-map of START is shown in Fig 2.
Now we describe the two dashboards in detail.

3.1 A dashboard for annotation and E-reader builder
This dashboard is mainly for annotating the data. Typically the Sanskrit texts are found in
sandhied form, and need segmentation before we proceed for any annotation. Majority of popular
texts are also in poetic/verse form. This also imposes another requirement for processing that the
input text be marked with sentential boundaries providing a meaningful unit for dependency
parsing. It is also necessary to get the prose form of the input text so that the translation
into other languages becomes easier. The dashboard caters to all these needs. The dashboard
provides access to various tools such as

• Segmenter: The Sanskrit Heritage segmenter is plugged in which provides the best possible
segmentation(Sriram et al., 2023). The annotator can edit the text if the segmentation is
wrong at any place (See Fig 3).

• Word and Sentence analyser: The Saṁsādhanī sentential parser is used to get the
dependency parse of the segmented text. The best solution is provided in the form of a
table with collapsible rows. For each word, the best morphological analysis in the context

16This is a part of the design, but is still not ready.

117

Figure 1: Content Management

Figure 2: Mind-map of START

118

and its relation to other word in a sentence are provided, along with a link to the dictionary
entry. The analysis generated at each stage is manually editable (See Figure 4). In the
case of morphological analysis and dependency parsing, the annotator is provided with
alternative possible analyses in the drop down menu from which s/he can select the correct
one if the machine produced analysis is wrong. The dependency graph is displayed in the
form of a tree, with colored nodes, color reflecting the grammatical category of the word.
This way, the annotator can visualise the analyses and confirm her/his annotation (See Figs
4 and 5).

Figure 3: E-Reader Dashboard

Figure 4: Grammatical analysis of the given sloka

• Prose Order Generator: Finally we also provide a tool to generate the prose word order
from the dependency graph. The output of this tool is also editable, in case the user is
not happy with the machine generated word order. In the current version, we have not yet
plugged in the prose word order generator.

• Translator: We plan to plug-in the Sanskrit-Hindi/Telugu/Marathi translation systems,
once they are ready for deployment. The tool also allows one to edit the translation, or
provide a manual translation of the text into other languages.

119

Figure 5: Dependency Tree

• E-reader generator: Once the analysed data is saved, the E-reader generator generates
a page corresponding to the input dynamically showing analyses at all levels in a well
structured manner with collapsible rows (See Fig 6). It is very important that the annotator
herself visualises this data graphically to ensure that there are no mistakes (See Fig 7).
E-reader builder provides this facility. Further, once such annotated data is certified by the
editor, it is also made available to the general public, with a consent of the annotator and ed-
itor, on the E-reader platform, so that readers interested in reading such texts get benefited.

Figure 6: e-Reader

3.2 A Dashboard for learning and teaching Sanskrit
Under this mode, several computational tools such as sandhi joiner and splitter, morphological
analyser and generator, sentential analyser and generator, a web interface for Amarakośa, and
a concordance of important dhātuvṛttis are available (See Fig. 8). We describe these tools in
brief highlighting the pedagogical aspect.

• Sandhi : Sandhi is an enhanced version of Saṁsādhanī’s sandhi Joiner having 3 teaching
modes such as Basic, Intermediate and Advanced. The basic mode can be used for teaching
sandhi rules in the schools and also its very useful for beginners. The Intermediate and

120

Figure 7: e-Reader with Parser

Figure 8: List of SCL tools

Advanced modes are for Sanskrit scholars or lovers who want to learn sandhi with Pāṇinian
grammar. (See Fig 9)

• Sandhi-Splitter : Sandhi-splitter automatically splits or separates words that have un-
dergone sandhi changes back into their original forms. It can be used for splitting single
word or a full sentence or a paragraph. At the back-end, the Heritage Sanskrit Engine that
prioritizes the solutions based on probability models is used.

• Noun-form Generator : It generates inflected noun forms of a given nominal stem (prāti-
padikam) in all the seven cases, and three numbers.

• Verb-form Generator: It generates the conjugational verb-forms of a verbal root (dhātu)
with various tense, mood, voice, person, number, and one or more prefixes.

• Morphological Analyser : It provides all possible analyses of a given word. This is very
much useful for a reader who has doubts about the morphological analysis of any word.

121

Figure 9: Sandhi

• Concordance of Pāṇinian Dhātuvṛttis : The current tool provides the comparison
of Pāṇinian Dhātuvṛttis. The three vṛttis chosen are Mādhavīyā Dhātuvṛtti by Sāyaṇa,
Kṣīrataraṅgiṇī by Kṣīrasvāmin and Dhātupradīpa by Maitreyarakṣita. This resource is
very much useful for the Sanskrit scholars and students.

• Sentential Parser: This is part of the E-reader Dashboard.

• Sentence Generator, Compound Word Generator and Amarakośa: The interfaces
for these are being developed. The original tools are available under Saṁsādhanī.

3.3 User Profile
Under user profile, each user can track his/her own work. The facility to form a group is useful
for the team leader to monitor the progress of each member. A teacher can use this feature to
design different assignments for different classes. If the answers are provided by the teachers in
advance, the system can provide instant feedback to the students on their performance.

4 Technological Stack in Development
The combined utilization of Angular 13, Bootstrap 5, CGI, MongoDB 4, Python3 Flask, and
Graphviz forms a powerful technological stack that empowers START with dynamic frontend
interfaces, robust backend functionality, and insightful data visualization capabilities. This com-
prehensive toolkit lays the foundation for a feature-rich, responsive, and user-centric application.

• Angular:17 Angular is a robust open-source framework for creating dynamic, single-page
web applications, known for its component-based architecture and two-way data binding.

• Bootstrap:18 Bootstrap is a widely-used open-source CSS framework that offers a col-
lection of pre-designed templates and components, streamlining the process of building
responsive and visually appealing websites.

• CGI: CGI (Common Gateway Interface) is a standard protocol for web servers to communi-
cate with external programs, enabling dynamic content generation and interaction between
web servers and applications.

17https://angular.io/
18https://getbootstrap.com/

122

• MongoDB:19 MongoDB is a NoSQL database system that employs a document-oriented
model for data storage, providing scalability and flexibility for managing large volumes of
unstructured data.

• Python Flask:20 Flask is a lightweight and flexible web framework for Python, simplifying
web application development by offering essential tools and libraries, making it suitable for
small to medium-sized projects.

• Graphviz:21 Graphviz is an open-source graph visualization software that facilitates the
creation of diagrams and graphs for visualizing complex relationships and structures in data
or information systems.

5 Impact on Digital Humanities
START’s innovation transcends the realm of Sanskrit studies, influencing the broader landscape
of digital humanities. Its robust annotation framework, collaborative ethos, and analytical tools
serve as a blueprint for similar initiatives in other languages and disciplines. As the digital
humanities continue to evolve, START paves the way for a more interconnected and enriched
scholarly community.

6 Future Horizons
The future of START holds tantalizing prospects. Integration with machine learning algorithms,
natural language processing, and visualization tools could further amplify the platform’s ana-
lytical capabilities. Additionally, efforts to expand the corpus of annotated Sanskrit texts could
yield a more comprehensive understanding of the language’s nuances, intricacies, and cultural
significance.

7 Conclusion
The Sanskrit Teaching, Annotation and Research Tool (START) stands as a testimony to the
harmonious convergence of ancient wisdom and modern technology. Its transformative an-
notation system and broader impact on the digital humanities signal a new era of scholarly
exploration and inquiry. In embracing START, researchers embark on a journey that not only
uncovers the depths of Sanskrit literature but also redefines the very essence of interdisciplinary
and intertemporal scholarly engagement.

Acknowledgements
This research was made possible through the generous financial support of the IoE Directorate,
University of Hyderabad for the project ‘An Integrated Digital Platform for Language Learning,
Teaching and Computational Linguistics’ (2021-23).

References
The Text Encoding Initiative Consortium. 2021. Text encoding and interchange (TEI): https://tei-c.

org/guidelines/.

Pawan Goyal and Gerard Huet. 2016. Design and analysis of a lean interface for Sanskrit corpus
annotation. Journal of Language Modelling, 4(2):145–182, Oct.

Pawan Goyal, Gérard Huet, Amba Kulkarni, Peter Scharf, and Ralph Bunker. 2012. A distributed
platform for Sanskrit processing. In Proceedings of COLING 2012, pages 1011–1028, Mumbai, India,
December. The COLING 2012 Organizing Committee.

19https://www.mongodb.com/
20https://flask.palletsprojects.com/en/2.3.x/
21https://graphviz.org/

123

Oliver Hellwig and Sebastian Nehrdich. 2018. Sanskrit word segmentation using character-level recurrent
and convolutional neural networks. In Proceedings of the 2018 Conference on Empirical Methods in
Natural Language Processing, pages 2754–2763, Brussels, Belgium, October-November. Association for
Computational Linguistics.

Gérard Huet. 2004. Design of a lexical database for Sanskrit. In Proceedings of the Workshop on
Enhancing and Using Electronic Dictionaries, pages 8–14, Geneva, Switzerland, August 29th. COLING.

Amrith Krishna, Shiv Vidhyut, Dilpreet Chawla, Sruti Sambhavi, and Pawan Goyal. 2020. SHR++: An
interface for morpho-syntactic annotation of Sanskrit corpora. In Proceedings of the Twelfth Language
Resources and Evaluation Conference, pages 7069–7076, Marseille, France, May. European Language
Resources Association.

Amba Kulkarni and Devanand Shukl. 2009. Sanskrit morphological analyser: Some issues. Indian
Linguistics, 70(1-4):169–177.

Anil Kumar, Vipul Mittal, and Amba Kulkarni. 2010. Sanskrit compound processor. In Girish Nath
Jha, editor, Sanskrit Computational Linguistics, pages 57–69, Berlin, Heidelberg. Springer Berlin Hei-
delberg.

Hiroki Nakayama, Takahiro Kubo, Junya Kamura, Yasufumi Taniguchi, and Xu Liang. 2018. doc-
cano: Text annotation tool for human https://github.com/doccano/doccano software available from
https://github.com/doccano/doccano.

Jivnesh Sandhan, Anshul Agarwal, Laxmidhar Behera, Tushar Sandhan, and Pawan Goyal. 2023. San-
skritshala. In A neural sanskrit nlp toolkit with web-based interface for pedagogical and annotation
purposes.

Peter M Scharf and Dhruv Chauhan. 2023. Rāmopākhyāna. In A web-based reader and index. In
Proceedings of the Computational Sanskrit & Digital Humanities: Selected papers presented at the 18th
World Sanskrit Conference, pages 146–154, Canberra, Australia (Online mode), January. Association
for Computational Linguistics.

Krishnan Sriram, Amba Kulkarni, and Gérard Huet. 2023. Validation and normalization of DCS corpus
and development of the Sanskrit heritage engine’s segmenter. In Proceedings of the Computational
Sanskrit and Digital Humanities: Selected papers presented at the 18th World Sanskrit Conference.

Hrishikesh Terdalkar and Arnab Bhattacharya. 2021. Sangrahaka: A tool for annotating and querying
knowledge graphs. In Proceedings of the 29th ACM Joint European Software Engineering Conference
and Symposium on the Foundations of Software Engineering (ESEC/FSE’21).

124

The Śabdabrahman exercise platform

Peter M. Scharf
President, The Sanskrit Library

Adjunct Professor, IIIT Hyderabad
scharf@sanskritlibrary.org

Harsha Pamidipalli
Software engineer, The Sanskrit Library
MS by research student, IIIT Hyderabad

harsha@sanskritlibrary.org

Abstract

The Śabdabrahman exercise platform (SBE), at sabdabrahman.org, is an on-line inter-
active Sanskrit instructional platform that offers immediate feedback and focused help to
students at every step of analyzing and translating the Sanskrit sentences in a first-year
Sanskrit textbook. Steps include transliteration from Devanagari to standard Roman-
ization and vice versa, analysis of sandhi, identification of nominal and verbal inflection,
syntax, compound analysis, and translation. Student submission at each step is eval-
uated, errors highlighted, and links supplied to relevant help. Source documents are
prepared in XML in accordance with the Text-Encoding Initiative guidelines. The plat-
form is coded in Flask and ReactJS and hosted at Amazon Web Services (AWS). The
platform has been successfully used in first-year Sanskrit courses offered through The
Sanskrit Library (sanskritlibrary.org).

1 Introduction
The decline of systematic instruction in Sanskrit and the increase of superficial conversational
Sanskrit instructional materials dissappoint students who seek an introduction to the depth
and complexity of the Sanskrit language and literature. The result is that students fail to be
introduced to genuine historical texts so go from “I don’t know” to “I don’t care”. Nevertheless,
it is possible to use digital technology in an intelligent way to engage enthusiastic students in
the beauty and depth of Sanskrit in a rigorous manner. The Śabdabrahman exercise platform
(SBE), accessible at sabdabrahman.org, is an interactive platform that leads students through
every step of understanding and translating into English the Sanskrit sentences in the first-year
Sanskrit textbook by Scharf (2022a) while providing detailed feedback and focused help. The
platform is currently available to students enrolled in first-year Sankrit courses at the Sanskrit
Library sanskritlibrary.org/courses.html. Soon to be added to the platform are the verses
and prose paraphrases of them by Scharf (2022b) for second-year Sanskrit students. Śabdabrah-
man is a dynamic platform that combines a rich repository of resources with interactive tools.
In an age where digital technologies have reshaped educational paradigms, this website offers
an unparalleled opportunity to delve into the rich tapestry of Sanskrit literature and linguistics.
We shall navigate through the various facets of Śabdabrahman, elucidating its architecture, key
features, and the user experience it offers.

2 Motivation
In a first-year Sanskrit course outside of India, as in the first-year course in any ancient language,
or in any language course that focuses on developing the ability to read texts, students are
confronted with several aspects of the language at once: script, phonetics, morphology, syntax,
and semantics. In daily homework assignments, Sanskrit students transcribe from Devanagari
to Roman script with diacritics, analyze inter-word prosodic changes (sandhi), identify the
inflection of each word, that is, the declension of nominal forms and conjugation of finite verbs,
analyze the syntactic structure of each sentence and translate. In a homework set which typically

125

consists of thirty or more sentences, the student might repeatedly encounter the same difficulty or
make the same mistakes. However, the student has no opportunity to clarify his understanding
or correct his mistakes until he submits the homework assignment and the instructor corrects
it and hands it back days or perhaps a week later. Lingering doubt and repeated errors lead to
frustration on the part of the student. The instructor too typically spends hours correcting the
students’ transcription from Devanagari to Roman script with diacritics, analysis of inter-word
prosodic changes (sandhi), inflectional identification, syntax, and translation. The correction of
the first several steps is extremely time-consuming and tedious. Frequently students proceed to
a new exercise set before they receive corrections on their first set; hence they often repeat the
same mistakes, not only within an exercise set but also in subsequent sets, leading to further
frustration. The instructor, to his exasperation, therefore has to repeat the same comments
numerous times. Moreover, because the student receives comments on the first set several days
after completing it, due to the delay he might no longer recall the context of instructor comments
so might not attend to the correction with due attention. In short, the information lag makes
learning inefficient.

Ideally it is desirable for the student to receive immediate focused feedback on each step of
each sentence in each exercise set, that is, to receive immediate confirmation of correct work, to
receive immediate focused pin-pointing of mistakes, and to be directed to and have immediate
access to relevant information to explore issues about which he has doubt or confusion. We have
developed an on-line interactive exercise platform that offers these features.

Most currently available language learning software is oriented towards teaching business and
travel themes for aural/oral communicative use of modern languages (Murray and Barnes 1998:
253). Popular apps such as DuoLingo, Rosetta Stone, Babbel, Pimsleur, etc. are all geared
toward these goals. The development of comprehensive language-learning software involves as-
sembling numerous experts and is an expensive undertaking from conception and design to
implementation and evaluation (Turel and McKenna 2014: 1200). The development of compre-
hensive language-learning software for classical culture-bear languages is slim. The system we
have developed is unprecedented.

3 Overview of the Śabdabrahman exercise platform (SBE)

The interactive Śabdabrahman exercise platform (SBE) provides the student with immediate
focused help at each stage of working through a sentence. This help enables the student to correct
his own mistakes. The platform does not provide the correct answer but rather pinpoints the
error and provides links to assistance. Each stage of working through a sentence is dealt with
in a separate pane. Each pane has a sidebar provided with links to appropriate help and also
evaluates the student’s submitted work.

First the platform asks the student to transcribe the Devanagari sentence (Figure 1). It then
compares the student’s transcription of Devanagari with the correct transcription and highlights
differences (Figure 2). The highlit error is linked to an appropriate document: a page showing
simple signs or dependent vowel signs and their Romanization, or a page showing conjunct
consonant signs.

Once the transcription is correct, a confirmation message is given and the student is presented
with the second pane where he is asked to analyze sandhi. SBE implements sandhi on the
student’s sandhi-analysis, compares the result with the original question and highlights the
errors in red (Figure 3). Where doing sandhi to the student’s sandhi-analysis does reproduce the
correct original, but the analysis is erroneous or insufficient, SBE compares the student’s sandhi-
analysis with the correct analysis, highlights differences in blue and displays brief instructions
upon mouse-over (Figure 4). Clicking on the highlit differences links to the appropriate sandhi
table.

Once the sandhi analysis is correct, a confirmation message is given and the student is pre-
sented with the third pane in which he is asked to select the words’ lemma, i.e. the root of

126

Figure 1: SBE transliteration question

Figure 2: SBE transliteration error highlighting

127

Figure 3: SBE sandhi analysis pane with highlit errors

Figure 4: SBE sandhi analysis pane with highlit errors and mouse-over message

128

each finite verb or the stem of each nominal, from a glossary, choose its correct lexical cate-
gory, and enter its inflectional identifier (Figure 5). A dialogue box that shows the possible
options for each parameter assists with inflectional identification if desired (Figure 6). Experi-
enced students can simply type the inflectional identifier in the text box. The morphological
identification of each word can be checked individually or all at once. Incomplete items and
mistakes are flagged (Figure 7). If the student has selected a root or stem but made an error
in its inflectional identification, SBE provides a link to the inflectional paradigm appropriate to
the selected stem.

When the student has correctly identified all of the inflectional morphology, SBE provides
a confirmation message and the student can proceed to the fourth pane in which he is asked
to analyze the syntax of the sentence, and the fifth pane in which he is asked to translate the
sentence. He is free to move between the syntax and translation panes. Syntactic relations are
divided into two classes: primary and secondary. Primary relations include identification of the
main verb of a clause and relations denoted by nominal declension such as kāraka relations,
qualification, and possession. Secondary relations include predication, and relations indicated
by particles such as conjunction, alternation, and contrast. We save detailed discussion of these
syntactic relations for another occasion. For each word, the student selects the primary or
secondary relation, and the target or targets of the relation. A target is another word in the
sentence to which the word is subordinate in that relation. Relations are selected by flex search
from a list of relations that are possible for the given item, and targets are selected by flex
search from a list of words in the sentence. Errors are flagged when the student checks. Once
primary relations are correct, SBE makes available a graph showing primary relations, or, if all
relations are correct, a graph showing both primary and secondary relations (Figure 8). Primary
relations are shown in gold with blue arrows to their targets; secondary relations in silver with
green arrows to their targets.

The translation pane presents the student with all of the information he has previously com-
pleted correctly to assist him in composing his translation as well as a brief translation of each
lemma as given in the glossary (Figure 9). When the student enters a translation in the trans-
lation pane text box, SBE checks for a match against the possible correct translations provided.
If it does not match any, SBE verifies whether all necessary terms have been included or not,
calculates the closeness to the correct translation, and provides an appropriate message. If the
student simply enters the word translations provided, SBE recognizes the translation as incom-
plete (Figure 10). SBE also includes nominal, verbal, and participle identification drills, and
compound analysis not shown here.

All answers including translations are saved and made available to the instructor to go over
with the students in their subsequent meeting. SBE itself provides entirely complete feedback
to the student on all clearly categorical steps, but the translation may involve subtle nuances
beyond the scope of currently available technology to evaluate. The instructor may view just the
translation, or additional steps so that they may be shown to students for explanatory purposes
in class meetings (Figure 11). SBE tracks the completed exercises of each student for both
the student’s benefit, and the instructors evaluation. Percentages are displayed of completed
questions within each exercises, lesson, and text.

4 Source

The questions and correct answers are prepared in a set of coordinated XML files structured in
accordance with the Text-Encoding Initiative guidelines. Scharf (2018) discusses and illustrates
the general features of the TEI markup of verses and their constituent verse quarters and words.
Ajotikar and Scharf (2023) describe the use of TEI to mark up commentaries. The Search
and Retrieval of Indic Texts (SARIT) Website includes detailed guides to how to structure a
Sanskrit text in accordance with the TEI Guidelines under the About SARIT menu https:
//sarit.indology.info. Hence we pass over detailed description of the structure within each

129

Figure 5: SBE identification pane with lemma flex search

130

Figure 6: SBE identification pane with inflection identification dialogue box

131

Figure 7: SBE identification pane error flagging

Figure 8: SBE syntax tree with primary and secondary relations

132

Figure 9: SBE glossary

Figure 10: SBE translation pane recognizing an incomplete lemma-only translation

133

Figure 11: SBE instructor view of student’s answers

file in the set of files that constitute the source of the Śabdabrahman platform but instead just
briefly describe the files and their relation. Necessary files include a morpheme file, a morpheme
translation file, and an English translation file. Files are coordinated using the xml:id of each
sentence, word, and morpheme as key. In the morpheme file each sentence is analyzed into
words and their constituent morphemes, each word is provided with an inflectional identifier
and syntactic relation attributes, and each morpheme is given a lexical identifier. A sandhi-
analyzed sentence file, and question file can be produced programmatically from the morpheme
file by assembling words in sequence and applying sandhi between them. In fact the files were
initially created in the opposite order, that is, by manually analyzing sandhi in a question file to
produce a sandhi-analyzed sentence file, then programmatically creating a word file with blank
attributes for morphological and syntactic identification and morphemic analysis, then manually
filling in those blanks.

5 Website structure

SBE is structured like Scharf (2022a), the first-year Sanskrit text book Śabdabrahman: a lin-
guistic introduction to Sanskrit, on which it was initially based. This structure makes it intuitive
for users to navigate, access content, and engage with the platform. This section provides an
in-depth exploration of the website’s structural framework, elucidating its hierarchy, navigation,
and organizational principles.

5.1 Hierarchy and navigation

SBE adopts a well-structured hierarchy that facilitates intuitive navigation for users. The web-
site’s hierarchy includes the following features:

Navigation Bar: Provides quick access to key sections such as homes, chapters, and user
profiles.

Menus: A simple main menu and sub-menus within each main section enable users to drill
down to specific content and help.

Internal links: Hyperlinks and breadcrumbs connect related content within and across pages,
enhancing user navigation.

134

5.2 Sections and pages
The website is divided into the following distinct sections, each dedicated to a specific aspect of
Sanskrit learning and exploration:

Home: A simple landing page displays a welcome message and a link to the Chapters section.
Chapters: A top-level menu displays all the chapters. Each chapter shows the exercises in-

cluded in it, and each exercise shows the questions within it.
Resources: A menu provides access to a repository of textual and multimedia resources, in-

cluding classical Sanskrit texts, translations, pronunciation guides, and dictionaries at The
Sanskrit Library (sanskritlibrary.org).

User profiles: Users can create and manage their profiles and track their progress. Teachers
have access to student exercises and their progress.

Each section contains multiple pages, ensuring comprehensive coverage of topics and resources
related to Sanskrit studies.

5.3 Sitemap and diagrams
To provide a visual representation of the website’s structure, an illustrative sitemap and diagrams
are included in this section. These diagrams offer a bird’s-eye view of how various pages and
sections are interconnected.

5.4 User-centric design
The website’s structure is designed with the user experience in mind, ensuring that learners,
regardless of their familiarity with Sanskrit, can easily find, access, and engage with content.
User feedback and usability studies have played a crucial role in refining the website’s structure,
leading to an intuitive and learner-friendly interface.

5.5 Key features and functionalities
The following are the core features and functionalities that define the user experience in SBE:

Intelligent help: SBE provides intelligent and extensive feedback when a user makes a mistake.
Software not only evaluates and classifies errors but also highlights them and links to apt
help. This enables the user to strengthen his understanding of the relevant concept and
submit the correct answer.

Interactive exercises: To enhance the learning experience, SBE provides interactive tools and
resources.

Glossary: A comprehensive, searchable dictionary with part-of-speech lexical identification,
and translation of every word in the text.

User-friendly input tools: Dialogue boxes and flex lists ease the users selection.

These resources empower learners to increase their understanding and hone their language skills
in a hands-on manner.

6 User experience
In this section, we examine the user-centric design of SBE, focusing on how the website’s lay-
out, design, and interactive elements contribute to an effective and enjoyable Sanskrit learning
journey. A user-centric approach is integral to the website’s success in catering to a diverse
audience.

Intuitive navigation: SBE prioritizes user-friendly navigation, ensuring that learners of all
levels can easily find their way around the website. The clear and organized menu struc-
ture guides users to the resources, courses, and community features they seek. Intuitive
breadcrumbs, internal links, and a user-friendly search function further enhance navigation.

135

Responsive design: SBE employs a responsive-design approach, adapting seamlessly to var-
ious devices, including desktops, tablets, and smartphones. This flexibility ensures that
users can engage with Sanskrit learning content on their preferred devices, promoting ac-
cessibility.

Clear course progression: Courses in SBE are structured with a clear progression, allowing
users to systematically advance their Sanskrit language skills. Learners can easily track
their progress through modules, lessons, and exercises, motivating them to continue their
studies.

Interactive Learning: Interactive elements, such as quizzes, exercises, and pronunciation
guides, actively engage users in the learning process. These features reinforce compre-
hension and retention while maintaining an engaging and dynamic learning environment.

User profiles and progress tracking: User profiles in SBE empower learners to monitor
their progress, view achievements, and set personalized learning goals. Progress track-
ing not only motivates users but also allows them to pick up where they left off in their
Sanskrit studies.

The user experience in SBE is thoughtfully designed to cater to a wide-ranging audience,
from beginners to advanced scholars. By offering intuitive navigation, and interactive learning
tools, the website promotes a positive and engaging environment for Sanskrit enthusiasts. In
the following sections, we will explore the technical aspects, including the technology stack and
any notable achievements in enhancing the user experience.

7 Technical details
This section delves into the technical underpinnings of SBE, shedding light on the technologies,
infrastructure, and considerations that enable the website to function seamlessly. Understanding
these technical aspects provides valuable insights into the website’s robustness and scalability.

7.1 Technology stack
SBE leverages a well-defined technology stack to deliver its services. Key components may
include:
ReactJS: The user interface is built using the Javascript framework ReactJS. A responsive

and interactive frontend has been developed making use of its own bootstrap and many
supported libraries.

Flask: Python programming language’s Flask framework has been used to develop the backend.
A REST API is created to enable interaction between the client (frontend) and the server
(backend).

Database system: An SQLite database is used to store all the data pertaining to the questions,
exercises, and chapters. User information and their answers are also stored here. Flask’s
SQL Alchemy is used to interact with the database.

Web server: Amazon Web Services (AWS) is used to host both the frontend and backend.
7.2 Hosting and infrastructure
SBE operates on a reliable hosting infrastructure, ensuring high availability and performance.
Key aspects to consider include:
Hosting provider: Amazon Web Services (AWS) is the hosting provider. The website is de-

ployed in the cloud using Amazon’s Elastic Compute Cloud (EC2) instance. EC2 provides
scalable computing capacity as a virtual server. At present SBE is hosted on a t4g.small
EC2 instance.

Server specifications: The t4g.small instance provides 2 virtual CPUs and 2 GB of RAM.
This instance is powered by AWS Graviton2 processors, which are based on 64-bit Arm
Neoverse cores. Amazon’s Elastic Block Store (EBS) is linked with the instance to get a
storage capacity of 25 GB.

136

Scalability: T4g.small instances provide baseline CPU performance that can temporarily burst
to handle increased workloads. One can customize scaling behavior to match the applica-
tion’s needs or enable autoscaling, which will duplicate the instance to handle greater load.

Security measures: Security is paramount for SBE. The security measures in place to protect
user data include:
SSL encryption: A library named certbot is used to generate an SSL certificate. An SSL

certificate is crucial to secure data during transmission over the internet. It provides
data privacy, integrity, and authentication, which are essential for online security, trust,
and regulatory compliance.

User authentication: Google’s Firebase is used to authenticate users with email and
password. A simple graphic User Interface (GUI) helps the professor or administrator
create multiple user accounts at once. Once a user’s account is created, the user is
notified and given a temporary password. Users can log in with this and change their
password.

7.3 Maintenance and updates
Through regular testing and feedback from the users, we make many revisions and upgrades to
the website. In order to update the website securely, we minimized the room for human error by
automating the whole process. We have a bash script in place that will take backups and sync
all the files with the server. Apart from this, we backup our database every day and maintain
the last three days’ backups.

The whole project is maintained on Github for version control. All the updates and changes are
logged as and when an update is made to the website. Appropriate comments and documentation
help maintain a clear and transparent record of all the changes to the website.

8 Use
The SBE system has been used already by eighty-eight students in several courses with glowing
evaluation. The principal advantages are that SBE provides immediate focused feedback, makes
help easily accessible, and interaction with it is engaging, makes learning more fun, and allows
more effective use of class time. One student summed up his experience in the Sanskrit Library’s
first-year Sanskrit class using the Śabdabrahman exercise platform as follows:

How refreshing to have instant and definitive responses to questions! As you work
through assigned transliteration, sandhi, and parsing you get feedback virtually imme-
diately. And the volume of exercises assigned ensures that newly-learned material is
reinforced.
I have found SBE’s quick feedback invaluable for learning the basics of the language,
allowing for solid progression in a much more time-efficient way than in a traditional
classroom. With SBE, time in class with the professor (via Zoom) can be more produc-
tively focused on exploring deeper principles, instead of learning basics. The dynamic
of SBE-plus-classroom meetings enhances overall progress, making the learning of San-
skrit more fulfilling and satisfying than pure self-study alone. I felt like I had been
walking for a long time on the side of the road, and then someone stopped their car
and gave me a ride.

9 References
Ajotikar, Tanuja P. and Peter M. Scharf (2023). “Development of a TEI standard for digital

Sanskrit texts containing commentaries: A pilot study of bhaṭṭi’s Rāvaṇavadha with Malli-
nātha’s commentary on the first canto.” In: Proceedings of the Computational Sanskrit &
Digital Humanities: Selected papers presented at the 18th World Sanskrit Conference. Ed.
by Amba Kulkarni and Oliver Hellwig. Canberra, Australia (Online mode): Association for

137

Computational Linguistics, pp. 128–45. url: https://aclanthology.org/2023.wsc-csdh.
9.

Murray, Liam and Ann Barnes (1998). “Beyond the ‘wow’ factor—evaluating multimedia lan-
guage learning software from a pedagogical viewpoint.” In: System 26.2, 249–59.

Scharf, Peter M. (July 2018). “TEITagger: Raising the standard for digital texts to facilitate
interchange with linguistic software.” In: Proceedings of Computational Sanskrit & the Digital
Humanities: selected papers presented at the World Sanskrit Conference. University of British
Columbia, Vancouver.

–. (2022a). Śabdabrahman: a linguistic introduction to Sanskrit. The Sanskrit Library.
–. (2022b). Saṅkṣiptamahābhāratam: the Mahābhārata in a nutshell: a one-chapter narration in

forty-three verses presented as an independent-study reader in Sanskrit. The Sanskrit Library.
Turel, Vehbi and Peter McKenna (2014). “Design of language learning software.” In: Soft-

ware Design and Development: Concepts, Methodologies, Tools, and Applications. IGI Global,
pp. 1200–21.

138

